These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 33081079)

  • 21. Detection and mitigation of DDoS attacks based on multi-dimensional characteristics in SDN.
    Wang K; Fu Y; Duan X; Liu T
    Sci Rep; 2024 Jul; 14(1):16421. PubMed ID: 39014041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. VMFCVD: An Optimized Framework to Combat Volumetric DDoS Attacks using Machine Learning.
    Prasad A; Chandra S
    Arab J Sci Eng; 2022; 47(8):9965-9983. PubMed ID: 35096507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GLD-Net: Deep Learning to Detect DDoS Attack via Topological and Traffic Feature Fusion.
    Guo W; Qiu H; Liu Z; Zhu J; Wang Q
    Comput Intell Neurosci; 2022; 2022():4611331. PubMed ID: 36017461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ML-Based Detection of DDoS Attacks Using Evolutionary Algorithms Optimization.
    Talpur F; Korejo IA; Chandio AA; Ghulam A; Talpur MSH
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conditional Tabular Generative Adversarial Based Intrusion Detection System for Detecting Ddos and Dos Attacks on the Internet of Things Networks.
    Alabsi BA; Anbar M; Rihan SDA
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RSU-Based Online Intrusion Detection and Mitigation for VANET.
    Haydari A; Yilmaz Y
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Use of Ensemble Models for Multiple Class and Binary Class Classification for Improving Intrusion Detection Systems.
    Iwendi C; Khan S; Anajemba JH; Mittal M; Alenezi M; Alazab M
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust genetic machine learning ensemble model for intrusion detection in network traffic.
    Akhtar MA; Qadri SMO; Siddiqui MA; Mustafa SMN; Javaid S; Ali SA
    Sci Rep; 2023 Oct; 13(1):17227. PubMed ID: 37821521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MFFLR-DDoS: An encrypted LR-DDoS attack detection method based on multi-granularity feature fusions in SDN.
    Wang J; Wang L; Wang R
    Math Biosci Eng; 2024 Feb; 21(3):4187-4209. PubMed ID: 38549324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Experimental Detection of Distributed Denial of Service Attack in CDX 3 Platform Based on Snort.
    Chen CL; Lai JL
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Achieving model explainability for intrusion detection in VANETs with LIME.
    Hassan F; Yu J; Syed ZS; Ahmed N; Reshan MSA; Shaikh A
    PeerJ Comput Sci; 2023; 9():e1440. PubMed ID: 37409077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of Machine Learning Techniques for Traffic Flow-Based Intrusion Detection.
    Rodríguez M; Alesanco Á; Mehavilla L; García J
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of DDoS Vulnerability in Cloud Computing Using the Perplexed Bayes Classifier.
    Mishra N; Singh RK; Yadav SK
    Comput Intell Neurosci; 2022; 2022():9151847. PubMed ID: 35903800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time DDoS flood attack monitoring and detection (RT-AMD) model for cloud computing.
    Bamasag O; Alsaeedi A; Munshi A; Alghazzawi D; Alshehri S; Jamjoom A
    PeerJ Comput Sci; 2022; 7():e814. PubMed ID: 35721670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective Feature Selection Methods to Detect IoT DDoS Attack in 5G Core Network.
    Kim YE; Kim YS; Kim H
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Network intrusion detection using oversampling technique and machine learning algorithms.
    Ahmed HA; Hameed A; Bawany NZ
    PeerJ Comput Sci; 2022; 8():e820. PubMed ID: 35111914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Generative Learning Models for Cloud Intrusion Detection Systems.
    Vu L; Nguyen QU; Nguyen DN; Hoang DT; Dutkiewicz E
    IEEE Trans Cybern; 2023 Jan; 53(1):565-577. PubMed ID: 35439159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. IoT-DH dataset for classification, identification, and detection DDoS attack in IoT.
    Saif S; Widyawan W; Ferdiana R
    Data Brief; 2024 Jun; 54():110496. PubMed ID: 38774247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hybrid machine learning approach for detecting unprecedented DDoS attacks.
    Najafimehr M; Zarifzadeh S; Mostafavi S
    J Supercomput; 2022; 78(6):8106-8136. PubMed ID: 35017789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Secure Enhancement for MQTT Protocol Using Distributed Machine Learning Framework.
    Alotaibi NS; Sayed Ahmed HI; Kamel SOM; ElKabbany GF
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.