These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The impact of chitosan on the early metabolomic response of wheat to infection by Fusarium graminearum. Deshaies M; Lamari N; Ng CKY; Ward P; Doohan FM BMC Plant Biol; 2022 Feb; 22(1):73. PubMed ID: 35183130 [TBL] [Abstract][Full Text] [Related]
3. A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduce Fusarium head blight and mycotoxin contamination in wheat. Gunupuru LR; Patel JS; Sumarah MW; Renaud JB; Mantin EG; Prithiviraj B PLoS One; 2019; 14(9):e0220562. PubMed ID: 31509543 [TBL] [Abstract][Full Text] [Related]
4. Characterization of QTL and eQTL controlling early Fusarium graminearum infection and deoxynivalenol levels in a Wuhan 1 x Nyubai doubled haploid wheat population. Fauteux F; Wang Y; Rocheleau H; Liu Z; Pan Y; Fedak G; McCartney C; Ouellet T BMC Plant Biol; 2019 Dec; 19(1):536. PubMed ID: 31795937 [TBL] [Abstract][Full Text] [Related]
5. Exogenous Abscisic Acid and Gibberellic Acid Elicit Opposing Effects on Fusarium graminearum Infection in Wheat. Buhrow LM; Cram D; Tulpan D; Foroud NA; Loewen MC Phytopathology; 2016 Sep; 106(9):986-96. PubMed ID: 27135677 [TBL] [Abstract][Full Text] [Related]
6. Transgene pyramiding in wheat: Combination of deoxynivalenol detoxification with inhibition of cell wall degrading enzymes to contrast Fusarium Head Blight and Crown Rot. Mandalà G; Ceoloni C; Busato I; Favaron F; Tundo S Plant Sci; 2021 Dec; 313():111059. PubMed ID: 34763853 [TBL] [Abstract][Full Text] [Related]
7. Molecular mapping of QTL for Fusarium head blight resistance introgressed into durum wheat. Zhao M; Leng Y; Chao S; Xu SS; Zhong S Theor Appl Genet; 2018 Sep; 131(9):1939-1951. PubMed ID: 29869075 [TBL] [Abstract][Full Text] [Related]
8. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance. Li J; Duan Y; Bian C; Pan X; Yao C; Wang J; Zhou M Pestic Biochem Physiol; 2019 Jan; 153():152-160. PubMed ID: 30744889 [TBL] [Abstract][Full Text] [Related]
9. Cell wall traits as potential resources to improve resistance of durum wheat against Fusarium graminearum. Lionetti V; Giancaspro A; Fabri E; Giove SL; Reem N; Zabotina OA; Blanco A; Gadaleta A; Bellincampi D BMC Plant Biol; 2015 Jan; 15():6. PubMed ID: 25597920 [TBL] [Abstract][Full Text] [Related]
10. Cell wall features transferred from common into durum wheat to improve Fusarium Head Blight resistance. Giancaspro A; Lionetti V; Giove SL; Zito D; Fabri E; Reem N; Zabotina OA; De Angelis E; Monaci L; Bellincampi D; Gadaleta A Plant Sci; 2018 Sep; 274():121-128. PubMed ID: 30080595 [TBL] [Abstract][Full Text] [Related]
11. Fusarium graminearum Possesses Virulence Factors Common to Fusarium Head Blight of Wheat and Seedling Rot of Soybean but Differing in Their Impact on Disease Severity. Sella L; Gazzetti K; Castiglioni C; Schäfer W; Favaron F Phytopathology; 2014 Nov; 104(11):1201-7. PubMed ID: 24779355 [TBL] [Abstract][Full Text] [Related]
12. Weighted gene co-expression network analysis unveils gene networks associated with the Fusarium head blight resistance in tetraploid wheat. Sari E; Cabral AL; Polley B; Tan Y; Hsueh E; Konkin DJ; Knox RE; Ruan Y; Fobert PR BMC Genomics; 2019 Dec; 20(1):925. PubMed ID: 31795948 [TBL] [Abstract][Full Text] [Related]
13. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Kheiri A; Moosawi Jorf SA; Malihipour A; Saremi H; Nikkhah M Int J Biol Macromol; 2016 Dec; 93(Pt A):1261-1272. PubMed ID: 27664927 [TBL] [Abstract][Full Text] [Related]
14. Occurrence of mycotoxins in wheat grains exposed to fungicides on fusarium head blight control in southern Brazil. Marques LN; Pizzutti IR; Balardin RS; Dos Santos ID; Dias JV; Stefanello MT; Serafini PT J Environ Sci Health B; 2017 Apr; 52(4):244-250. PubMed ID: 28080216 [TBL] [Abstract][Full Text] [Related]
15. Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: two essential mechanisms of Fusarium head blight resistance in wheat? Gottwald S; Samans B; Lück S; Friedt W BMC Genomics; 2012 Aug; 13():369. PubMed ID: 22857656 [TBL] [Abstract][Full Text] [Related]
16. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623 [TBL] [Abstract][Full Text] [Related]
17. Transgenic Wheat Expressing a Barley UDP-Glucosyltransferase Detoxifies Deoxynivalenol and Provides High Levels of Resistance to Fusarium graminearum. Li X; Shin S; Heinen S; Dill-Macky R; Berthiller F; Nersesian N; Clemente T; McCormick S; Muehlbauer GJ Mol Plant Microbe Interact; 2015 Nov; 28(11):1237-46. PubMed ID: 26214711 [TBL] [Abstract][Full Text] [Related]
18. Combination of Palazzini J; Reynoso A; Yerkovich N; Zachetti V; Ramírez M; Chulze S Toxins (Basel); 2022 Jul; 14(7):. PubMed ID: 35878237 [No Abstract] [Full Text] [Related]
20. Role of fungicides, application of nozzle types, and the resistance level of wheat varieties in the control of Fusarium head blight and deoxynivalenol. Mesterházy A; Tóth B; Varga M; Bartók T; Szabó-Hevér A; Farády L; Lehoczki-Krsjak S Toxins (Basel); 2011 Nov; 3(11):1453-83. PubMed ID: 22174980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]