These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 33081211)
21. Fusarium graminearum forms mycotoxin producing infection structures on wheat. Boenisch MJ; Schäfer W BMC Plant Biol; 2011 Jul; 11():110. PubMed ID: 21798058 [TBL] [Abstract][Full Text] [Related]
22. Fitness Traits of Deoxynivalenol and Nivalenol-Producing Fusarium graminearum Species Complex Strains from Wheat. Nicolli CP; Machado FJ; Spolti P; Del Ponte EM Plant Dis; 2018 Jul; 102(7):1341-1347. PubMed ID: 30673560 [TBL] [Abstract][Full Text] [Related]
23. Identification of QTLs for Resistance to Castro Aviles A; Alan Harrison S; Joseph Arceneaux K; Brown-Guidera G; Esten Mason R; Baisakh N Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32630440 [No Abstract] [Full Text] [Related]
24. Transcriptome dynamics associated with resistance and susceptibility against fusarium head blight in four wheat genotypes. Pan Y; Liu Z; Rocheleau H; Fauteux F; Wang Y; McCartney C; Ouellet T BMC Genomics; 2018 Aug; 19(1):642. PubMed ID: 30157778 [TBL] [Abstract][Full Text] [Related]
25. Cloning and characterization of a specific UDP-glycosyltransferase gene induced by DON and Fusarium graminearum. Zhao L; Ma X; Su P; Ge W; Wu H; Guo X; Li A; Wang H; Kong L Plant Cell Rep; 2018 Apr; 37(4):641-652. PubMed ID: 29372381 [TBL] [Abstract][Full Text] [Related]
26. Effect of Wheat Cultivar on the Concentration of Fusarium Mycotoxins in Wheat Stems. Bissonnette KM; Kolb FL; Ames KA; Bradley CA Plant Dis; 2018 Dec; 102(12):2539-2544. PubMed ID: 30252626 [TBL] [Abstract][Full Text] [Related]
27. Durum wheat (Triticum Durum Desf.) lines show different abilities to form masked mycotoxins under greenhouse conditions. Cirlini M; Generotti S; Dall'Erta A; Lancioni P; Ferrazzano G; Massi A; Galaverna G; Dall'Asta C Toxins (Basel); 2013 Dec; 6(1):81-95. PubMed ID: 24368326 [TBL] [Abstract][Full Text] [Related]
28. TaFROG Encodes a Pooideae Orphan Protein That Interacts with SnRK1 and Enhances Resistance to the Mycotoxigenic Fungus Fusarium graminearum. Perochon A; Jianguang J; Kahla A; Arunachalam C; Scofield SR; Bowden S; Wallington E; Doohan FM Plant Physiol; 2015 Dec; 169(4):2895-906. PubMed ID: 26508775 [TBL] [Abstract][Full Text] [Related]
29. Integrated transcriptome and hormone profiling highlight the role of multiple phytohormone pathways in wheat resistance against fusarium head blight. Wang L; Li Q; Liu Z; Surendra A; Pan Y; Li Y; Zaharia LI; Ouellet T; Fobert PR PLoS One; 2018; 13(11):e0207036. PubMed ID: 30403737 [TBL] [Abstract][Full Text] [Related]
30. Mechanism of validamycin A inhibiting DON biosynthesis and synergizing with DMI fungicides against Fusarium graminearum. Bian C; Duan Y; Xiu Q; Wang J; Tao X; Zhou M Mol Plant Pathol; 2021 Jul; 22(7):769-785. PubMed ID: 33934484 [TBL] [Abstract][Full Text] [Related]
31. Identification, characterization and mapping of differentially expressed genes in a winter wheat cultivar (Centenaire) resistant to Fusarium graminearum infection. Muhovski Y; Batoko H; Jacquemin JM Mol Biol Rep; 2012 Oct; 39(10):9583-600. PubMed ID: 22718510 [TBL] [Abstract][Full Text] [Related]
32. Identification and differential induction of ABCG transporter genes in wheat cultivars challenged by a deoxynivalenol-producing Fusarium graminearum strain. Muhovski Y; Jacquemin JM; Batoko H Mol Biol Rep; 2014 Sep; 41(9):6181-94. PubMed ID: 24973883 [TBL] [Abstract][Full Text] [Related]
33. The O'Mara SP; Broz K; Boenisch M; Zhong Z; Dong Y; Kistler HC Mol Plant Microbe Interact; 2020 Jul; 33(7):888-901. PubMed ID: 32484730 [TBL] [Abstract][Full Text] [Related]
34. QTL mapping of Fusarium head blight resistance in three related durum wheat populations. Prat N; Guilbert C; Prah U; Wachter E; Steiner B; Langin T; Robert O; Buerstmayr H Theor Appl Genet; 2017 Jan; 130(1):13-27. PubMed ID: 27662843 [TBL] [Abstract][Full Text] [Related]
35. The Effects of Selenium on Wheat Fusarium Head Blight and DON Accumulation Were Selenium Compound-Dependent. Mao X; Hua C; Yang L; Zhang Y; Sun Z; Li L; Li T Toxins (Basel); 2020 Sep; 12(9):. PubMed ID: 32899906 [TBL] [Abstract][Full Text] [Related]
36. Biocontrol of Fusarium graminearum sensu stricto, Reduction of Deoxynivalenol Accumulation and Phytohormone Induction by Two Selected Antagonists. Palazzini J; Roncallo P; Cantoro R; Chiotta M; Yerkovich N; Palacios S; Echenique V; Torres A; Ramírez M; Karlovsky P; Chulze S Toxins (Basel); 2018 Feb; 10(2):. PubMed ID: 29461480 [TBL] [Abstract][Full Text] [Related]
37. Wheat Blast and Fusarium Head Blight Display Contrasting Interaction Patterns on Ears of Wheat Genotypes Differing in Resistance. Ha X; Koopmann B; von Tiedemann A Phytopathology; 2016 Mar; 106(3):270-81. PubMed ID: 26574785 [TBL] [Abstract][Full Text] [Related]
38. Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production. Gardiner DM; Kazan K; Praud S; Torney FJ; Rusu A; Manners JM BMC Plant Biol; 2010 Dec; 10():289. PubMed ID: 21192794 [TBL] [Abstract][Full Text] [Related]
39. Within-field variation of Fusarium graminearum isolates for aggressiveness and deoxynivalenol production in wheat head blight. Talas F; Kalih R; Miedaner T Phytopathology; 2012 Jan; 102(1):128-34. PubMed ID: 22165985 [TBL] [Abstract][Full Text] [Related]
40. Impact of epoxiconazole on Fusarium head blight control, grain yield and deoxynivalenol accumulation in wheat. Duan Y; Xiao X; Li T; Chen W; Wang J; Fraaije BA; Zhou M Pestic Biochem Physiol; 2018 Nov; 152():138-147. PubMed ID: 30497704 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]