These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33081222)

  • 21. Stay in Touch-The Cortical ER of Moss Protonemata in Osmotic Stress Situations.
    Harant D; Lang I
    Plants (Basel); 2020 Mar; 9(4):. PubMed ID: 32235617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens.
    Roberts AW; Bushoven JT
    Plant Mol Biol; 2007 Jan; 63(2):207-19. PubMed ID: 17006591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake.
    Garciadeblas B; Barrero-Gil J; Benito B; Rodríguez-Navarro A
    Plant J; 2007 Dec; 52(6):1080-93. PubMed ID: 17916113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ag nanoparticles inhibit the growth of the bryophyte, Physcomitrella patens.
    Liang L; Tang H; Deng Z; Liu Y; Chen X; Wang H
    Ecotoxicol Environ Saf; 2018 Nov; 164():739-748. PubMed ID: 30122261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Abscisic acid-induced freezing tolerance in the moss Physcomitrella patens is accompanied by increased expression of stress-related genes.
    Minami A; Nagao M; Arakawa K; Fujikawa S; Takezawa D
    J Plant Physiol; 2003 May; 160(5):475-83. PubMed ID: 12806775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a method for protonema proliferation of peat moss (Sphagnum squarrosum) through regeneration analysis.
    Zhao W; Li Z; Hu Y; Wang M; Zheng S; Li Q; Wang Y; Xu L; Li X; Zhu R; Reski R; Sun Y
    New Phytol; 2019 Jan; 221(2):1160-1171. PubMed ID: 30145823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of a comprehensive microfluidic and microscopic toolbox for the ultra-wide spatio-temporal study of plant protoplasts development and physiology.
    Sakai K; Charlot F; Le Saux T; Bonhomme S; Nogué F; Palauqui JC; Fattaccioli J
    Plant Methods; 2019; 15():79. PubMed ID: 31367225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional characterization of LIKE HETEROCHROMATIN PROTEIN 1 in the moss Physcomitrella patens: its conserved protein interactions in land plants.
    Parihar V; Arya D; Walia A; Tyagi V; Dangwal M; Verma V; Khurana R; Boora N; Kapoor S; Kapoor M
    Plant J; 2019 Jan; 97(2):221-239. PubMed ID: 30537172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated Image Acquisition and Morphological Analysis of Cell Growth Mutants in Physcomitrella patens.
    Galotto G; Bibeau JP; Vidali L
    Methods Mol Biol; 2019; 1992():307-322. PubMed ID: 31148047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-Wide Analysis of Heat-Sensitive Alternative Splicing in Physcomitrella patens.
    Chang CY; Lin WD; Tu SL
    Plant Physiol; 2014 Jun; 165(2):826-840. PubMed ID: 24777346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulatory Mechanism of ABA and ABI3 on Vegetative Development in the Moss
    Zhao M; Li Q; Chen Z; Lv Q; Bao F; Wang X; He Y
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30213069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acclimation and endogenous abscisic acid in the moss Physcomitrella patens during acquisition of desiccation tolerance.
    Rathnayake KN; Nelson S; Seeve C; Oliver MJ; Koster KL
    Physiol Plant; 2019 Nov; 167(3):317-329. PubMed ID: 30525218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional Characterization of Class I Trehalose Biosynthesis Genes in
    Phan TLCHB; Delorge I; Avonce N; Van Dijck P
    Front Plant Sci; 2019; 10():1694. PubMed ID: 32038675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmental genetic studies of the moss, Physcomitrella patens.
    Cove DJ; Kammerer W; Knight CD; Leech MJ; Martin CR; Wang TL
    Symp Soc Exp Biol; 1991; 45():31-43. PubMed ID: 1843414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional cross-kingdom conservation of mammalian and moss (Physcomitrella patens) transcription, translation and secretion machineries.
    Gitzinger M; Parsons J; Reski R; Fussenegger M
    Plant Biotechnol J; 2009 Jan; 7(1):73-86. PubMed ID: 19021876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accumulation of theanderose in association with development of freezing tolerance in the moss Physcomitrella patens.
    Nagao M; Oku K; Minami A; Mizuno K; Sakurai M; Arakawa K; Fujikawa S; Takezawa D
    Phytochemistry; 2006 Apr; 67(7):702-9. PubMed ID: 16527318
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Eight types of stem cells in the life cycle of the moss Physcomitrella patens.
    Kofuji R; Hasebe M
    Curr Opin Plant Biol; 2014 Feb; 17():13-21. PubMed ID: 24507489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens.
    Proust H; Hoffmann B; Xie X; Yoneyama K; Schaefer DG; Yoneyama K; Nogué F; Rameau C
    Development; 2011 Apr; 138(8):1531-9. PubMed ID: 21367820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction between the moss Physcomitrella patens and Phytophthora: a novel pathosystem for live-cell imaging of subcellular defence.
    Overdijk EJ; DE Keijzer J; DE Groot D; Schoina C; Bouwmeester K; Ketelaar T; Govers F
    J Microsc; 2016 Aug; 263(2):171-80. PubMed ID: 27027911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Light requirements for regeneration of protoplasts of the moss Physcomitrella patens.
    Jenkins GI; Cove DJ
    Planta; 1983 Feb; 157(1):39-45. PubMed ID: 24263943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.