These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33081301)

  • 1. Effect of Electrolyzed Alkaline-Reduced Water on the Early Strength Development of Cement Mortar Using Blast Furnace Slag.
    Lee T; Kim S; Park SG
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycling Blast Furnace Ferronickel Slag as a Replacement for Paste in Mortar: Formation of Carboaluminate, Reduction of White Portland Cement, and Increase in Strength.
    Guan Q; Xia J; Wang J; Leng F; Zhou Y; Cao C
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of Early Strength of Cement Mortar Containing Granulated Blast Furnace Slag Using Industrial Byproducts.
    Kim JH; Lee HS
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28880256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential Role of GGBS and ACBFS Blast Furnace Slag at 90 Days for Application in Rigid Concrete Pavements.
    Nicula LM; Manea DL; Simedru D; Cadar O; Dragomir ML; Ardelean I; Corbu O
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Potassium-Based Alkaline Electrolyzed Water on Hydration Process and the Properties of Cement-Based Materials with Fly Ash.
    Yu Z; Xie Z; Zhang T; Yue G; Liu H; Li Q; Wang L
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process.
    Kim HH; Kim CS; Jeon JH; Park CG
    Materials (Basel); 2016 Jan; 9(2):. PubMed ID: 28787883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Destructive Evaluation of Mortar with Ground Granulated Blast Furnace Slag Blended Cement Using Ultrasonic Pulse Velocity.
    Loke CK; Lehane B; Aslani F; Majhi S; Mukherjee A
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Ground Granulated Blast Furnace Slag Replacement Ratio on Structural Performance of Precast Concrete Beams.
    Lee YJ; Kim HG; Kim KH
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Durability of Fibre-Reinforced Calcium Aluminate Cement (CAC)-Ground Granulated Blast Furnace Slag (GGBFS) Blended Mortar after Sulfuric Acid Attack.
    Fan W; Zhuge Y; Ma X; Chow CWK; Gorjian N; Oh JA; Duan W
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.
    Lee HS; Wang XY; Zhang LN; Koh KT
    Materials (Basel); 2015 Mar; 8(3):1213-1229. PubMed ID: 28787998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag.
    Zhao X; Lim SK; Tan CS; Li B; Ling TC; Huang R; Wang Q
    Materials (Basel); 2015 Jan; 8(2):462-473. PubMed ID: 28787950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calorimetric Studies of Alkali-Activated Blast-Furnace Slag Cements at Early Hydration Processes in the Temperature Range of 20-80 °C.
    Usherov-Marshak A; Vaičiukynienė D; Krivenko P; Bumanis G
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the Curing Regime, Acid Exposure, Alkaline Activator Dosage, and Precursor Content on the Strength Development of Mortar with Alkali-Activated Slag and Fly Ash Binder: A Critical Review.
    Mohamed OA
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The possibility of fly ash and blast furnace slag disposal by using these environmental wastes as substitutes in portland cement.
    Bayraktar OY
    Environ Monit Assess; 2019 Aug; 191(9):560. PubMed ID: 31407116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of α-Calcium Sulfate Hemihydrate on Setting, Compressive Strength, and Shrinkage Strain of Cement Mortar.
    Lee B; Kim G; Nam J; Lee K; Kim G; Lee S; Shin K; Koyama T
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30621008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive Strength and Durability of FGD Gypsum-Based Mortars Blended with Ground Granulated Blast Furnace Slag.
    Pang M; Sun Z; Huang H
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Light-Burnt Dolomite Incorporation on the Setting, Strength, and Drying Shrinkage of One-Part Alkali-Activated Slag Cement.
    Jeon IK; Ryou JS; Jakhrani SH; Kim HG
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31492043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Slag from the Combustion of Solid Municipal Waste as A Partial Replacement of Cement in Mortar and Concrete.
    Czop M; Łaźniewska-Piekarczyk B
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32244460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the Pore Structure Characteristics of Ferronickel-Slag-Mixed Ternary-Blended Cement.
    Cho WJ; Kim MJ; Kim JS
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Influence of CaO and MgO on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Powder.
    Feng S; Zhu J; Wang R; Qu Z; Song L; Wang H
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.