These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33081370)

  • 41. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Graphene-based multifunctional humidity sensors with an ultrahigh current response.
    Antonova IV; Poteryayev DA; Ivanov AI; Nebogatikova NA; Shavelkina MB
    Phys Chem Chem Phys; 2024 Feb; 26(6):5489-5498. PubMed ID: 38282480
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dielectric constant enhancement of poly 4-vinylphenol (PVPh)
    Ali A; Teke S; Siddiqui GU; Mok YS
    RSC Adv; 2023 Oct; 13(45):31426-31434. PubMed ID: 37901272
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly Conductive Self-Healing Biocomposites Based on Protein Mediated Self-Assembly of PEDOT:PSS Films.
    Kikuchi Y; Pena-Francesch A; Vural M; Demirel MC
    ACS Appl Bio Mater; 2020 Apr; 3(4):2507-2515. PubMed ID: 35025301
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly flexible and conductive poly (3, 4-ethylene dioxythiophene)-poly (styrene sulfonate) anchored 3-dimensional porous graphene network-based electrochemical biosensor for glucose and pH detection in human perspiration.
    Zahed MA; Barman SC; Das PS; Sharifuzzaman M; Yoon HS; Yoon SH; Park JY
    Biosens Bioelectron; 2020 Jul; 160():112220. PubMed ID: 32339151
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lateral assembly of oxidized graphene flakes into large-scale transparent conductive thin films with a three-dimensional surfactant 4-sulfocalix[4]arene.
    Sundramoorthy AK; Wang Y; Wang J; Che J; Thong YX; Lu AC; Chan-Park MB
    Sci Rep; 2015 Jun; 5():10716. PubMed ID: 26040436
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High performance flexible supercapacitors based on secondary doped PEDOT-PSS-graphene nanocomposite films for large area solid state devices.
    Khasim S; Pasha A; Badi N; Lakshmi M; Mishra YK
    RSC Adv; 2020 Mar; 10(18):10526-10539. PubMed ID: 35492922
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics.
    Gomez De Arco L; Zhang Y; Schlenker CW; Ryu K; Thompson ME; Zhou C
    ACS Nano; 2010 May; 4(5):2865-73. PubMed ID: 20394355
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comprehensive study of sulfonated carbon materials as conductive composites for polymer solar cells.
    Ji T; Tan L; Hu X; Dai Y; Chen Y
    Phys Chem Chem Phys; 2015 Feb; 17(6):4137-45. PubMed ID: 25563771
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication of graphene flakes composed of multi-layer graphene sheets using a thermal plasma jet system.
    Kim J; Heo SB; Gu GH; Suh JS
    Nanotechnology; 2010 Mar; 21(9):095601. PubMed ID: 20110587
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Smart nanopaper based on cellulose nanofibers with hybrid PEDOT:PSS/polypyrrole for energy storage devices.
    Lay M; Pèlach MÀ; Pellicer N; Tarrés JA; Bun KN; Vilaseca F
    Carbohydr Polym; 2017 Jun; 165():86-95. PubMed ID: 28363579
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication of Highly Conductive Porous Fe
    Gao L; Liu F; Wei Q; Cai Z; Duan J; Li F; Li H; Lv R; Wang M; Li J; Wang L
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631508
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fabrication of Sodium Trimetaphosphate-Based PEDOT:PSS Conductive Hydrogels.
    Reynolds M; Stoy LM; Sun J; Opoku Amponsah PE; Li L; Soto M; Song S
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391444
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced Graphene Mechanical Properties through Ultrasmooth Copper Growth Substrates.
    Griep MH; Sandoz-Rosado E; Tumlin TM; Wetzel E
    Nano Lett; 2016 Mar; 16(3):1657-62. PubMed ID: 26882091
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Scalable graphene production: perspectives and challenges of plasma applications.
    Levchenko I; Ostrikov KK; Zheng J; Li X; Keidar M; B K Teo K
    Nanoscale; 2016 May; 8(20):10511-27. PubMed ID: 26837802
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Scalable Manufacturing of Free-Standing, Strong Ti
    Zhang J; Kong N; Uzun S; Levitt A; Seyedin S; Lynch PA; Qin S; Han M; Yang W; Liu J; Wang X; Gogotsi Y; Razal JM
    Adv Mater; 2020 Jun; 32(23):e2001093. PubMed ID: 32309891
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Organic-inorganic hybrid perovskite quantum dot light-emitting diodes using a graphene electrode and modified PEDOT:PSS.
    Zhang Q; Yu H; Liu Z; Lu Y; Ye D; Qian J; Wu Y; Gu W; Ma B; Zhang L; Duan Y; Liu L; Cao K; Chen S; Huang W
    RSC Adv; 2019 Jul; 9(36):20931-20940. PubMed ID: 35515567
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flexible
    Wang Y; Pang H; Guo Q; Tsujii N; Baba T; Baba T; Mori T
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51245-51254. PubMed ID: 34677926
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Graphene Flake Self-Assembly Enhancement via Stretchable Platforms and External Mechanical Stimuli.
    Loh HA; Marchi C; Magagnin L; Sierros KA
    ACS Omega; 2021 Nov; 6(45):30607-30617. PubMed ID: 34805689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.