These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 33081409)
1. Reduction and Oxidation of Cu Species in Cu-Faujasites Studied by IR Spectroscopy. Kuterasiński Ł; Podobiński J; Madej E; Smoliło-Utrata M; Rutkowska-Zbik D; Datka J Molecules; 2020 Oct; 25(20):. PubMed ID: 33081409 [TBL] [Abstract][Full Text] [Related]
2. IR Studies of the Cu Ions in Cu-Faujasites. Kuterasiński Ł; Podobiński J; Rutkowska-Zbik D; Datka J Molecules; 2019 Nov; 24(23):. PubMed ID: 31766618 [TBL] [Abstract][Full Text] [Related]
3. Oxidation of Ethanol in Cu-Faujasites Studied by IR Spectroscopy. Kuterasiński Ł; Podobiński J; Datka J Molecules; 2021 May; 26(9):. PubMed ID: 34063240 [TBL] [Abstract][Full Text] [Related]
4. Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites. Dinh KT; Sullivan MM; Narsimhan K; Serna P; Meyer RJ; Dincă M; Román-Leshkov Y J Am Chem Soc; 2019 Jul; 141(29):11641-11650. PubMed ID: 31306002 [TBL] [Abstract][Full Text] [Related]
5. Metal loaded zeolite adsorbents for hydrogen cyanide removal. Ning P; Qiu J; Wang X; Liu W; Chen W J Environ Sci (China); 2013 Apr; 25(4):808-14. PubMed ID: 23923791 [TBL] [Abstract][Full Text] [Related]
6. Removal of pyridine from liquid and gas phase by copper forms of natural and synthetic zeolites. Reháková M; Fortunová L; Bastl Z; Nagyová S; Dolinská S; Jorík V; Jóna E J Hazard Mater; 2011 Feb; 186(1):699-706. PubMed ID: 21145651 [TBL] [Abstract][Full Text] [Related]
7. Platinum species in the pores of NaX, NaY and NaA zeolites studied using EPR, XAS and FTIR spectroscopies. Akdogan Y; Vogt C; Bauer M; Bertagnolli H; Giurgiu L; Roduner E Phys Chem Chem Phys; 2008 May; 10(20):2952-63. PubMed ID: 18473043 [TBL] [Abstract][Full Text] [Related]
8. Investigation of solution chemistry effects on sorption behavior of Cu(II) on ZSM-5 zeolite. Zhang L; Zhang H; Yu X Water Environ Res; 2011 Dec; 83(12):2170-7. PubMed ID: 22368959 [TBL] [Abstract][Full Text] [Related]
9. Reaction pathway investigation on the selective catalytic reduction of NO with NH3 over Cu/SSZ-13 at low temperatures. Su W; Chang H; Peng Y; Zhang C; Li J Environ Sci Technol; 2015 Jan; 49(1):467-73. PubMed ID: 25485842 [TBL] [Abstract][Full Text] [Related]
10. Transition-metal ions in zeolites: coordination and activation of oxygen. Smeets PJ; Woertink JS; Sels BF; Solomon EI; Schoonheydt RA Inorg Chem; 2010 Apr; 49(8):3573-83. PubMed ID: 20380459 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of dioxygen to copper in CuHY zeolite. Santra S; Archipov T; Ene AB; Komnik H; Stoll H; Roduner E; Rauhut G Phys Chem Chem Phys; 2009 Oct; 11(39):8855-66. PubMed ID: 20449032 [TBL] [Abstract][Full Text] [Related]
12. On the site-specificity of polycarbonyl complexes in Cu/zeolites: combined experimental and DFT study. Bulánek R; Drobná H; Nachtigall P; Rubes M; Bludský O Phys Chem Chem Phys; 2006 Dec; 8(47):5535-42. PubMed ID: 17136268 [TBL] [Abstract][Full Text] [Related]
13. Study of the adsorption reactions of thiophene on Cu(I)/HY-Al2O3 by Fourier transform infrared and temperature-programmed desorption: adsorption, desorption, and sorbent regeneration mechanisms. Tang XL; Shi L Langmuir; 2011 Oct; 27(19):11999-2007. PubMed ID: 21870798 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic identification and catalytic relevance of NH Rizzotto V; Chen D; Tabak BM; Yang JY; Ye D; Simon U; Chen P Chemosphere; 2020 Jul; 250():126272. PubMed ID: 32109703 [TBL] [Abstract][Full Text] [Related]
15. Catalytic effect of transition metals on microwave-induced degradation of atrazine in mineral micropores. Hu E; Cheng H Water Res; 2014 Jun; 57():8-19. PubMed ID: 24698722 [TBL] [Abstract][Full Text] [Related]
16. The local environment of Cu+ in Cu-Y zeolite and its relationship to the synthesis of dimethyl carbonate. Drake IJ; Zhang Y; Briggs D; Lim B; Chau T; Bell AT J Phys Chem B; 2006 Jun; 110(24):11654-64. PubMed ID: 16800460 [TBL] [Abstract][Full Text] [Related]
17. Exchange and reduction of Cu(2+) ions in clinoptilolite. Iznaga IR; Petranovskii V; Fuentes GR; Mendoza C; Aguilar AB J Colloid Interface Sci; 2007 Dec; 316(2):877-86. PubMed ID: 17897668 [TBL] [Abstract][Full Text] [Related]
18. EPR spectroscopy of Cu(I)-NO adsorption complexes formed over Cu-ZSM-5 and Cu-MCM-22 zeolites. Umamaheswari V; Hartmann M; Pöppl A J Phys Chem B; 2005 Feb; 109(4):1537-46. PubMed ID: 16851125 [TBL] [Abstract][Full Text] [Related]
19. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts. Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444 [TBL] [Abstract][Full Text] [Related]
20. Electronic view on ethene adsorption in Cu(I) exchanged zeolites. Rejmak P; Mitoraj M; Broclawik E Phys Chem Chem Phys; 2010 Mar; 12(10):2321-30. PubMed ID: 20449345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]