BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 33081466)

  • 1. Solution-Phase Hybrid Passivation for Efficient Infrared-Band Gap Quantum Dot Solar Cells.
    Mahajan C; Sharma A; Rath AK
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49840-49848. PubMed ID: 33081466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol and Halometallate, Mutually Passivated Quantum Dot Ink for Photovoltaic Application.
    Mandal D; Goswami PN; Rath AK
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26100-26108. PubMed ID: 31257850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics.
    Kim Y; Che F; Jo JW; Choi J; GarcĂ­a de Arquer FP; Voznyy O; Sun B; Kim J; Choi MJ; Quintero-Bermudez R; Fan F; Tan CS; Bladt E; Walters G; Proppe AH; Zou C; Yuan H; Bals S; Hofkens J; Roeffaers MBJ; Hoogland S; Sargent EH
    Adv Mater; 2019 Apr; 31(17):e1805580. PubMed ID: 30860292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic-Inorganic Hybrid Passivation Enables Perovskite QLEDs with an EQE of 16.48.
    Song J; Fang T; Li J; Xu L; Zhang F; Han B; Shan Q; Zeng H
    Adv Mater; 2018 Dec; 30(50):e1805409. PubMed ID: 30306653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation.
    Albaladejo-Siguan M; Becker-Koch D; Taylor AD; Sun Q; Lami V; Oppenheimer PG; Paulus F; Vaynzof Y
    ACS Nano; 2020 Jan; 14(1):384-393. PubMed ID: 31721556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.
    Huang J; Xu B; Yuan C; Chen H; Sun J; Sun L; Agren H
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18808-15. PubMed ID: 25310596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression.
    Ip AH; Kiani A; Kramer IJ; Voznyy O; Movahed HF; Levina L; Adachi MM; Hoogland S; Sargent EH
    ACS Nano; 2015 Sep; 9(9):8833-42. PubMed ID: 26266671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells.
    Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Dots Coupled to an Oriented Two-Dimensional Crystalline Matrix for Solar Cell Application.
    Mandal D; Rath AK
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39074-39082. PubMed ID: 30350942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells.
    Li M; Chen S; Zhao X; Xiong K; Wang B; Shah UA; Gao L; Lan X; Zhang J; Hsu HY; Tang J; Song H
    Small; 2022 Jan; 18(1):e2105495. PubMed ID: 34859592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure/Property Relations in "Giant" Semiconductor Nanocrystals: Opportunities in Photonics and Electronics.
    Navarro-Pardo F; Zhao H; Wang ZM; Rosei F
    Acc Chem Res; 2018 Mar; 51(3):609-618. PubMed ID: 29260851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells.
    Zhang J; Gao J; Miller EM; Luther JM; Beard MC
    ACS Nano; 2014 Jan; 8(1):614-22. PubMed ID: 24341705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy.
    Yang X; Yang J; Ullah MI; Xia Y; Liang G; Wang S; Zhang J; Hsu HY; Song H; Tang J
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42217-42225. PubMed ID: 32805951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of Hydroxyl Traps and Improved Coupling for Efficient and Stable Quantum Dot Solar Cells.
    Mandal D; Dambhare NV; Rath AK
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46549-46557. PubMed ID: 34553589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics.
    Liu S; Xiong K; Wang K; Liang G; Li MY; Tang H; Yang X; Huang Z; Lian L; Tan M; Wang K; Gao L; Song H; Zhang D; Gao J; Lan X; Tang J; Zhang J
    ACS Nano; 2021 Feb; 15(2):3376-3386. PubMed ID: 33512158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced charge carrier transport properties in colloidal quantum dot solar cells
    Hong J; Hou B; Lim J; Pak S; Kim BS; Cho Y; Lee J; Lee YW; Giraud P; Lee S; Park JB; Morris SM; Snaith HJ; Sohn JI; Cha S; Kim JM
    J Mater Chem A Mater; 2016 Dec; 4(48):18769-18775. PubMed ID: 29308200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of colloidal PbS quantum dot-based solar cells with near infrared emission.
    Lim S; Kim Y; Lee J; Han CJ; Kang J; Kim J
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9346-50. PubMed ID: 25971063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of bond adaptability in the passivation of colloidal quantum dot solids.
    Thon SM; Ip AH; Voznyy O; Levina L; Kemp KW; Carey GH; Masala S; Sargent EH
    ACS Nano; 2013 Sep; 7(9):7680-8. PubMed ID: 23909748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the Organic and Inorganic Passivation Mechanism of ZnO Nanowires for Construction of Efficient Bulk Heterojunction Quantum Dot Solar Cells.
    Wei Y; Nakamura M; Ding C; Liu D; Li H; Li Y; Yang Y; Wang D; Wang R; Hayase S; Masuda T; Shen Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36268-36276. PubMed ID: 35894431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Halide-, Hybrid-, and Perovskite-Functionalized Light Absorbing Quantum Materials of p-i-n Heterojunction Solar Cells.
    Beygi H; Sajjadi SA; Babakhani A; Young JF; van Veggel FCJM
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30283-30295. PubMed ID: 30107115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.