These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33081617)

  • 1. Young frigatebirds learn how to compensate for wind drift.
    Wynn J; Collet J; Prudor A; Corbeau A; Padget O; Guilford T; Weimerskirch H
    Proc Biol Sci; 2020 Oct; 287(1937):20201970. PubMed ID: 33081617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensation for wind drift in the nocturnally migrating Song Thrushes in relation to altitude and wind.
    Sinelschikova A; Vorotkov M; Bulyuk V; Bolshakov C
    Behav Processes; 2020 Aug; 177():104154. PubMed ID: 32479841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The problem of estimating wind drift in migrating birds.
    Green M; Alerstam T
    J Theor Biol; 2002 Oct; 218(4):485-96. PubMed ID: 12384051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of flight and foraging behaviour in a juvenile seabird with extreme soaring capacities.
    Corbeau A; Prudor A; Kato A; Weimerskirch H
    J Anim Ecol; 2020 Jan; 89(1):20-28. PubMed ID: 31628669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird.
    Gibb R; Shoji A; Fayet AL; Perrins CM; Guilford T; Freeman R
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28701505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.
    Yonehara Y; Goto Y; Yoda K; Watanuki Y; Young LC; Weimerskirch H; Bost CA; Sato K
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):9039-44. PubMed ID: 27457932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frigatebird behaviour at the ocean-atmosphere interface: integrating animal behaviour with multi-satellite data.
    De Monte S; Cotté C; d'Ovidio F; Lévy M; Le Corre M; Weimerskirch H
    J R Soc Interface; 2012 Dec; 9(77):3351-8. PubMed ID: 22951344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Albatrosses employ orientation and routing strategies similar to yacht racers.
    Goto Y; Weimerskirch H; Fukaya K; Yoda K; Naruoka M; Sato K
    Proc Natl Acad Sci U S A; 2024 Jun; 121(23):e2312851121. PubMed ID: 38771864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wind and orientation of migrating birds: a review.
    Richardson WJ
    EXS; 1991; 60():226-49. PubMed ID: 1838517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental verification of dynamic soaring in albatrosses.
    Sachs G; Traugott J; Nesterova AP; Bonadonna F
    J Exp Biol; 2013 Nov; 216(Pt 22):4222-32. PubMed ID: 24172888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gadfly petrels use knowledge of the windscape, not memorized foraging patches, to optimize foraging trips on ocean-wide scales.
    Ventura F; Granadeiro JP; Padget O; Catry P
    Proc Biol Sci; 2020 Jan; 287(1918):20191775. PubMed ID: 31937218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pelagic seabirds reduce risk by flying into the eye of the storm.
    Lempidakis E; Shepard ELC; Ross AN; Matsumoto S; Koyama S; Takeuchi I; Yoda K
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2212925119. PubMed ID: 36194636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soaring migrants flexibly respond to sea-breeze in a migratory bottleneck: using first derivatives to identify behavioural adjustments over time.
    Becciu P; Troupin D; Dinevich L; Leshem Y; Sapir N
    Mov Ecol; 2023 Jul; 11(1):44. PubMed ID: 37501209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wind estimation based on thermal soaring of birds.
    Weinzierl R; Bohrer G; Kranstauber B; Fiedler W; Wikelski M; Flack A
    Ecol Evol; 2016 Dec; 6(24):8706-8718. PubMed ID: 28035262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bird orientation: compensation for wind drift in migrating raptors is age dependent.
    Thorup K; Alerstam T; Hake M; Kjellén N
    Proc Biol Sci; 2003 Aug; 270 Suppl 1(Suppl 1):S8-11. PubMed ID: 12952622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Migratory flight on the Pacific Flyway: strategies and tendencies of wind drift compensation.
    Newcombe PB; Nilsson C; Lin TY; Winner K; Bernstein G; Maji S; Sheldon D; Farnsworth A; Horton KG
    Biol Lett; 2019 Sep; 15(9):20190383. PubMed ID: 31530114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Navigating north: how body mass and winds shape avian flight behaviours across a North American migratory flyway.
    Horton KG; Van Doren BM; La Sorte FA; Fink D; Sheldon D; Farnsworth A; Kelly JF
    Ecol Lett; 2018 Jul; 21(7):1055-1064. PubMed ID: 29736919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haemoproteus iwa in Great Frigatebirds (Fregata minor) in the Islands of the Western Indian Ocean.
    Bastien M; Jaeger A; Le Corre M; Tortosa P; Lebarbenchon C
    PLoS One; 2014; 9(5):e97185. PubMed ID: 24810172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flight dynamics of Cory's shearwater foraging in a coastal environment.
    Paiva VH; Guilford T; Meade J; Geraldes P; Ramos JA; Garthe S
    Zoology (Jena); 2010 Jan; 113(1):47-56. PubMed ID: 20060697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flight speed and performance of the wandering albatross with respect to wind.
    Richardson PL; Wakefield ED; Phillips RA
    Mov Ecol; 2018; 6():3. PubMed ID: 29556395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.