These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33081621)

  • 21. Chronic warm exposure impairs growth performance and reduces thermal safety margins in the common triplefin fish (
    McArley TJ; Hickey AJR; Herbert NA
    J Exp Biol; 2017 Oct; 220(Pt 19):3527-3535. PubMed ID: 28760830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Climate change expands the spatial extent and duration of preferred thermal habitat for lake Superior fishes.
    Cline TJ; Bennington V; Kitchell JF
    PLoS One; 2013; 8(4):e62279. PubMed ID: 23638023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature and depth profiles of Chinook salmon and the energetic costs of their long-distance homing migrations.
    Keefer ML; Clabough TS; Jepson MA; Bowerman T; Caudill CC
    J Therm Biol; 2019 Jan; 79():155-165. PubMed ID: 30612677
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of warming on aquatic body sizes explained by metabolic scaling from microbes to macrofauna.
    Deutsch C; Penn JL; Verberk WCEP; Inomura K; Endress MG; Payne JL
    Proc Natl Acad Sci U S A; 2022 Jul; 119(28):e2201345119. PubMed ID: 35787059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxygen supply limits the chronic heat tolerance of locusts during the first instar only.
    Youngblood JP; VandenBrooks JM; Babarinde O; Donnay ME; Elliott DB; Fredette-Roman J; Angilletta MJ
    J Insect Physiol; 2020; 127():104157. PubMed ID: 33098860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature-dependent oxygen limitation in insect eggs.
    Woods HA; Hill RI
    J Exp Biol; 2004 Jun; 207(Pt 13):2267-76. PubMed ID: 15159431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of mechanistic physiology in investigating impacts of global warming on fishes.
    Lefevre S; Wang T; McKenzie DJ
    J Exp Biol; 2021 Feb; 224(Pt Suppl 1):. PubMed ID: 33627469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hotter nests produce hatchling lizards with lower thermal tolerance.
    Dayananda B; Murray BR; Webb JK
    J Exp Biol; 2017 Jun; 220(Pt 12):2159-2165. PubMed ID: 28615488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The interactive effects of climate change, riparian management, and a nonnative predator on stream-rearing salmon.
    Lawrence DJ; Stewart-Koster B; Olden JD; Ruesch AS; Torgersen CE; Lawler JJ; Butcher DP; Crown JK
    Ecol Appl; 2014 Jun; 24(4):895-912. PubMed ID: 24988784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro fertilization experiments using sockeye salmon reveal that bigger eggs are more fertilizable under sperm limitation.
    Macfarlane CP; Hoysak DJ; Liley NR; Gage MJ
    Proc Biol Sci; 2009 Jul; 276(1666):2503-7. PubMed ID: 19364734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxygen Limitation Does Not Drive the Decreasing Heat Tolerance of Grasshoppers during Development.
    Youngblood JP; da Silva CRB; Angilletta MJ; VandenBrooks JM
    Physiol Biochem Zool; 2019; 92(6):567-572. PubMed ID: 31567049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Native Chinook salmon Oncorhynchus tshawytscha and non-native brook trout Salvelinus fontinalis prefer similar water temperatures.
    Baird SE; Steel AE; Cocherell DE; Cech JJ; Fangue NA
    J Fish Biol; 2018 Nov; 93(5):1000-1004. PubMed ID: 30251252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impairing cardiac oxygen supply in swimming coho salmon compromises their heart function and tolerance to acute warming.
    Ekström A; Hendriks B; Van Wert JC; Gilbert MJH; Farrell AP; Cooke SJ; Patterson DA; Hinch SG; Eliason EJ
    Sci Rep; 2023 Dec; 13(1):21204. PubMed ID: 38040741
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of the coronary circulation on thermal tolerance and cardiac performance during warming in rainbow trout.
    Ekström A; Axelsson M; Gräns A; Brijs J; Sandblom E
    Am J Physiol Regul Integr Comp Physiol; 2017 Apr; 312(4):R549-R558. PubMed ID: 28330969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal bottlenecks in the life cycle define climate vulnerability of fish.
    Dahlke FT; Wohlrab S; Butzin M; Pörtner HO
    Science; 2020 Jul; 369(6499):65-70. PubMed ID: 32631888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal variability during ectotherm egg incubation: A synthesis and framework.
    Massey MD; Hutchings JA
    J Exp Zool A Ecol Integr Physiol; 2021 Jan; 335(1):59-71. PubMed ID: 32767534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amino acid cues emanating from Pacific salmon eggs and ovarian fluid.
    Dittman AH; Quinn TP
    J Fish Biol; 2020 Nov; 97(5):1408-1414. PubMed ID: 32829515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hyperoxia increases maximum oxygen consumption and aerobic scope of intertidal fish facing acutely high temperatures.
    McArley TJ; Hickey AJR; Herbert NA
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30254026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulated juvenile salmon growth and phenology respond to altered thermal regimes and stream network shape.
    Fullerton AH; Burke BJ; Lawler JJ; Torgersen CE; Ebersole JL; Leibowitz SG
    Ecosphere; 2017 Dec; 8(12):1-23. PubMed ID: 29552374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Significant differences in maternal carotenoid provisioning and effects on offspring fitness in Chinook salmon colour morphs.
    Lehnert SJ; Garver KA; Richard J; Devlin RH; Lajoie C; Pitcher TE; Heath DD
    J Evol Biol; 2018 Dec; 31(12):1876-1893. PubMed ID: 30264932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.