BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 33081724)

  • 21. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice.
    Wang D; Pan Y; Zhao X; Zhu L; Fu B; Li Z
    BMC Genomics; 2011 Mar; 12():149. PubMed ID: 21406116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice.
    Liu J; Shen J; Xu Y; Li X; Xiao J; Xiong L
    J Exp Bot; 2016 Oct; 67(19):5785-5798. PubMed ID: 27638689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of gene modules associated with drought response in rice by network-based analysis.
    Zhang L; Yu S; Zuo K; Luo L; Tang K
    PLoS One; 2012; 7(5):e33748. PubMed ID: 22662107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global Transcriptome and Weighted Gene Co-expression Network Analyses of Growth-Stage-Specific Drought Stress Responses in Maize.
    Liu S; Zenda T; Dong A; Yang Y; Wang N; Duan H
    Front Genet; 2021; 12():645443. PubMed ID: 33574835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of anther transcriptomes in response to cold stress at the reproductive stage between susceptible and resistant Japonica rice varieties.
    Guo Z; Ma W; Cai L; Guo T; Liu H; Wang L; Liu J; Ma B; Feng Y; Liu C; Pan G
    BMC Plant Biol; 2022 Oct; 22(1):500. PubMed ID: 36284279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. OsACA6, a P-type IIB Ca²⁺ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes.
    Huda KM; Banu MS; Garg B; Tula S; Tuteja R; Tuteja N
    Plant J; 2013 Dec; 76(6):997-1015. PubMed ID: 24128296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions.
    Todaka D; Zhao Y; Yoshida T; Kudo M; Kidokoro S; Mizoi J; Kodaira KS; Takebayashi Y; Kojima M; Sakakibara H; Toyooka K; Sato M; Fernie AR; Shinozaki K; Yamaguchi-Shinozaki K
    Plant J; 2017 Apr; 90(1):61-78. PubMed ID: 28019048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comprehensive Analysis of Rice Seedling Transcriptome during Dehydration and Rehydration.
    Park SY; Jeong DH
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal transcriptomic differences between tolerant and susceptible genotypes contribute to rice drought tolerance.
    Xia H; Ma X; Xu K; Wang L; Liu H; Chen L; Luo L
    BMC Genomics; 2020 Nov; 21(1):776. PubMed ID: 33167867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Precise Editing of the
    Usman B; Nawaz G; Zhao N; Liao S; Liu Y; Li R
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33113937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptomic Profiling of Young Cotyledons Response to Chilling Stress in Two Contrasting Cotton (
    Cheng G; Zhang L; Wang H; Lu J; Wei H; Yu S
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32707667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptional profile of genes involved in ascorbate glutathione cycle in senescing leaves for an early senescence leaf (esl) rice mutant.
    Li Z; Su D; Lei B; Wang F; Geng W; Pan G; Cheng F
    J Plant Physiol; 2015 Mar; 176():1-15. PubMed ID: 25546583
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Jing X; Yao J; Ma X; Zhang Y; Sun Y; Xiang M; Hou P; Li N; Zhao R; Li J; Zhou X; Chen S
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of drought stress-responsive genes in rice (
    Sirohi P; Yadav BS; Afzal S; Mani A; Singh NK
    J Genet; 2020; 99():. PubMed ID: 32482924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene co-expression network analysis to identify critical modules and candidate genes of drought-resistance in wheat.
    Lv L; Zhang W; Sun L; Zhao A; Zhang Y; Wang L; Liu Y; Li Z; Li H; Chen X
    PLoS One; 2020; 15(8):e0236186. PubMed ID: 32866164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cross-species transcriptomic analyses reveals common and opposite responses in Arabidopsis, rice and barley following oxidative stress and hormone treatment.
    Hartmann A; Berkowitz O; Whelan J; Narsai R
    BMC Plant Biol; 2022 Feb; 22(1):62. PubMed ID: 35120438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional and physiological data revealed cold tolerance in a photo-thermo sensitive genic male sterile line Yu17S.
    Pan X; Guan L; Lei K; Li J; Zhang X
    BMC Plant Biol; 2022 Jan; 22(1):44. PubMed ID: 35062884
    [TBL] [Abstract][Full Text] [Related]  

  • 38. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H
    Li J; Li Y; Yin Z; Jiang J; Zhang M; Guo X; Ye Z; Zhao Y; Xiong H; Zhang Z; Shao Y; Jiang C; Zhang H; An G; Paek NC; Ali J; Li Z
    Plant Biotechnol J; 2017 Feb; 15(2):183-196. PubMed ID: 27420922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrate deficiency decreased photosynthesis and oxidation-reduction processes, but increased cellular transport, lignin biosynthesis and flavonoid metabolism revealed by RNA-Seq in Oryza sativa leaves.
    Shao CH; Qiu CF; Qian YF; Liu GR
    PLoS One; 2020; 15(7):e0235975. PubMed ID: 32649704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species.
    Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A
    PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.