BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33082049)

  • 1. How to enhance the purification performance of traditional floating treatment wetlands (FTWs) at low temperatures: Strengthening strategies.
    Nsenga Kumwimba M; Batool A; Li X
    Sci Total Environ; 2021 Apr; 766():142608. PubMed ID: 33082049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds.
    Wang CY; Sample DJ
    J Environ Manage; 2014 May; 137():23-35. PubMed ID: 24594756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal.
    Sharma R; Vymazal J; Malaviya P
    Sci Total Environ; 2021 Jul; 777():146044. PubMed ID: 33689897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced nutrient removal in agro-industrial wastes-amended hybrid floating treatment wetlands treating real sewage: Laboratory microcosms to field-scale studies.
    Kumwimba MN; Huang J; Dzakpasu M; Ajibade FO; Li X; Sanganyado E; Guadie A; Şenel E; Muyembe DK
    Chemosphere; 2023 Jul; 330():138703. PubMed ID: 37100253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the water purification efficiency of a floating treatment wetland using a biofilm carrier.
    Zhang L; Zhao J; Cui N; Dai Y; Kong L; Wu J; Cheng S
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7437-43. PubMed ID: 26697862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing floating treatment wetland and retention pond design through random forest: A meta-analysis of influential variables.
    Tirpak RA; Tondera K; Tharp R; Borne KE; Schwammberger P; Ruppelt J; Winston RJ
    J Environ Manage; 2022 Jun; 312():114909. PubMed ID: 35305357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen and phosphorus removal comparison between periphyton on artificial substrates and plant-periphyton complex in floating treatment wetlands.
    Gao X; Wang Y; Sun B; Li N
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21161-21171. PubMed ID: 31119534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and evaluation of a process-based model to assess nutrient removal in floating treatment wetlands.
    Wang Y; Sun B; Gao X; Li N
    Sci Total Environ; 2019 Dec; 694():133633. PubMed ID: 31386953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen and phosphorus removal and Typha domingensis tolerance in a floating treatment wetland.
    Di Luca GA; Mufarrege MM; Hadad HR; Maine MA
    Sci Total Environ; 2019 Feb; 650(Pt 1):233-240. PubMed ID: 30196224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Floating treatment wetlands: A review and bibliometric analysis.
    Colares GS; Dell'Osbel N; Wiesel PG; Oliveira GA; Lemos PHZ; da Silva FP; Lutterbeck CA; Kist LT; Machado ÊL
    Sci Total Environ; 2020 Apr; 714():136776. PubMed ID: 31991269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technologies for performance intensification of floating treatment wetland - An explicit and comprehensive review.
    Zhang F; Wang J; Li L; Shen C; Zhang S; Zhang J; Liu R; Zhao Y
    Chemosphere; 2024 Jan; 348():140727. PubMed ID: 37977538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vegetation effects on floating treatment wetland nutrient removal and harvesting strategies in urban stormwater ponds.
    Wang CY; Sample DJ; Bell C
    Sci Total Environ; 2014 Nov; 499():384-93. PubMed ID: 25214393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viability assessment for the use of floating treatment wetlands as alternative production and remediation systems for nursery and greenhouse operations.
    Garcia Chance LM; Hall CR; White SA
    J Environ Manage; 2022 Mar; 305():114398. PubMed ID: 34991030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments and applications of floating treatment wetlands for treating different source waters: a review.
    Shen S; Li X; Lu X
    Environ Sci Pollut Res Int; 2021 Nov; 28(44):62061-62084. PubMed ID: 34586569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pilot and full scale applications of floating treatment wetlands for treating diffuse pollution.
    Vo TK; Vo TD; Ntagia E; Amulya K; Nguyen NK; Tran PY; Ninh NT; Le SL; Le LT; Tran CS; Ha TL; Pham MD; Bui XT; Lens PNL
    Sci Total Environ; 2023 Nov; 899():165595. PubMed ID: 37467995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing wastewater remediation by drinking water treatment residual-augmented floating treatment wetlands.
    Shen C; Zhao YQ; Liu RB; Morgan D; Wei T
    Sci Total Environ; 2019 Jul; 673():230-236. PubMed ID: 30991314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water.
    Shahid MJ; Ali S; Shabir G; Siddique M; Rizwan M; Seleiman MF; Afzal M
    Chemosphere; 2020 Mar; 243():125353. PubMed ID: 31765899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cr(III) and Cr(VI) removal in floating treatment wetlands (FTWs) using
    Di Luca GA; Mufarrege MLM; Hadad HR; Maine MA; Nocetti E; Montañez F; Campagnoli MA
    Int J Phytoremediation; 2023; 25(13):1819-1829. PubMed ID: 37035876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stormwater nitrogen removal performance of a floating treatment wetland.
    Borne KE; Tanner CC; Fassman-Beck EA
    Water Sci Technol; 2013; 68(7):1657-64. PubMed ID: 24135117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Floating treatment wetlands with Canna indica for the removal of Cr(III) and Cr(VI) from water: A comprehensive study.
    Di Luca GA; Mufarrege MLM; Hadad HR; Maine MA; Nocetti E; Campagnoli MA
    Sci Total Environ; 2024 Aug; 940():173642. PubMed ID: 38821283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.