These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33082255)

  • 61. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus.
    Gründling A; Schneewind O
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8478-83. PubMed ID: 17483484
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Incorporation of [2-3H]glycerol into cell surface components of Bacillus subtilis 168 and thermosensitive mutants affected in wall teichoic acid synthesis: effect of tunicamycin.
    Pooley HM; Karamata D
    Microbiology (Reading); 2000 Apr; 146 ( Pt 4)():797-805. PubMed ID: 10784037
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli.
    Côté JP; French S; Gehrke SS; MacNair CR; Mangat CS; Bharat A; Brown ED
    mBio; 2016 Nov; 7(6):. PubMed ID: 27879333
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Short-term kinetics of rRNA degradation in Escherichia coli upon starvation for carbon, amino acid or phosphate.
    Fessler M; Gummesson B; Charbon G; Svenningsen SL; Sørensen MA
    Mol Microbiol; 2020 May; 113(5):951-963. PubMed ID: 31960524
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparative studies of lipoteichoic acids from several Bacillus strains.
    Iwasaki H; Shimada A; Ito E
    J Bacteriol; 1986 Aug; 167(2):508-16. PubMed ID: 3733670
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Control of stable ribonucleic acid chain initiation in Escherichia coli during diauxie lag.
    Jacobson LA
    J Bacteriol; 1972 Feb; 109(2):678-85. PubMed ID: 4550814
    [TBL] [Abstract][Full Text] [Related]  

  • 67. N-acetylmannosaminyl(1----4)N-acetylglucosamine, a linkage unit between glycerol teichoic acid and peptidoglycan in cell walls of several Bacillus strains.
    Kaya S; Yokoyama K; Araki Y; Ito E
    J Bacteriol; 1984 Jun; 158(3):990-6. PubMed ID: 6427197
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Hydrophilic-hydrophobic properties of microorganisms under various culturing conditions].
    Nikovskaia GN; Gordienko AS; Globa LI
    Mikrobiologiia; 1989; 58(3):448-51. PubMed ID: 2511395
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Survival and implantation of Escherichia coli in the intestinal tract.
    Freter R; Brickner H; Fekete J; Vickerman MM; Carey KE
    Infect Immun; 1983 Feb; 39(2):686-703. PubMed ID: 6339389
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Acceleration effect of amino acid supplementation on glycerol assimilation by Escherichia coli in minimal medium.
    Xiang G; Li J; Duan J; Shao F; Xu J; Fu S; Gong H
    Biotechnol Lett; 2013 Sep; 35(9):1495-500. PubMed ID: 23666428
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Synthesis of sn-glycerol 3-phosphate, a key precursor of membrane lipids, in Bacillus subtilis.
    Morbidoni HR; de Mendoza D; Cronan JE
    J Bacteriol; 1995 Oct; 177(20):5899-905. PubMed ID: 7592341
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Effects of static magnetic fields on aerobes: Escherichia coli, Staphylococcus aureus and Bacillus subtilis].
    Jin F; Liu T; Li F; He J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Aug; 26(4):757-60. PubMed ID: 19813604
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bacterial growth properties at low optical densities.
    Novak M; Pfeiffer T; Ackermann M; Bonhoeffer S
    Antonie Van Leeuwenhoek; 2009 Oct; 96(3):267-74. PubMed ID: 19390987
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Permeation of glycerol and sporulation of Bacillus subtilis].
    Saheb SA
    Can J Microbiol; 1972 Aug; 18(8):1307-13. PubMed ID: 4626434
    [No Abstract]   [Full Text] [Related]  

  • 75. Environmental Dependence of Competitive Fitness in Rifampin-Resistant
    Leehan JD; Nicholson WL
    Appl Environ Microbiol; 2022 Mar; 88(5):e0242221. PubMed ID: 35258334
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Natural Escherichia coli isolates rapidly acquire genetic changes upon laboratory domestication.
    Liu B; Eydallin G; Maharjan RP; Feng L; Wang L; Ferenci T
    Microbiology (Reading); 2017 Jan; 163(1):22-30. PubMed ID: 28198347
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Experimental evolution of Bacillus subtilis.
    Zeigler DR; Nicholson WL
    Environ Microbiol; 2017 Sep; 19(9):3415-3422. PubMed ID: 28631363
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Growth of wildtype and mutant E. coli strains in minimal media for optimal production of nucleic acids for preparing labeled nucleotides.
    Thakur CS; Brown ME; Sama JN; Jackson ME; Dayie TK
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):771-9. PubMed ID: 20730533
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Spectrum of Spontaneous Rifampin Resistance Mutations in the Bacillus subtilis
    Leehan JD; Nicholson WL
    Appl Environ Microbiol; 2021 Oct; 87(22):e0123721. PubMed ID: 34495706
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mutations in the glycerol kinase gene restore the ability of a ptsGHI mutant of Bacillus subtilis to grow on glycerol.
    Wehtje C; Beijer L; Nilsson RP; Rutberg B
    Microbiology (Reading); 1995 May; 141 ( Pt 5)():1193-1198. PubMed ID: 7773413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.