BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33082438)

  • 1. Abrogation of HLA surface expression using CRISPR/Cas9 genome editing: a step toward universal T cell therapy.
    Lee J; Sheen JH; Lim O; Lee Y; Ryu J; Shin D; Kim YY; Kim M
    Sci Rep; 2020 Oct; 10(1):17753. PubMed ID: 33082438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies.
    Razeghian E; Nasution MKM; Rahman HS; Gardanova ZR; Abdelbasset WK; Aravindhan S; Bokov DO; Suksatan W; Nakhaei P; Shariatzadeh S; Marofi F; Yazdanifar M; Shamlou S; Motavalli R; Khiavi FM
    Stem Cell Res Ther; 2021 Jul; 12(1):428. PubMed ID: 34321099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A versatile system for rapid multiplex genome-edited CAR T cell generation.
    Ren J; Zhang X; Liu X; Fang C; Jiang S; June CH; Zhao Y
    Oncotarget; 2017 Mar; 8(10):17002-17011. PubMed ID: 28199983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 6. Antigen Presentation by Individually Transferred HLA Class I Genes in HLA-A, HLA-B, HLA-C Null Human Cell Line Generated Using the Multiplex CRISPR-Cas9 System.
    Hong CH; Sohn HJ; Lee HJ; Cho HI; Kim TG
    J Immunother; 2017; 40(6):201-210. PubMed ID: 28604557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition.
    Ren J; Liu X; Fang C; Jiang S; June CH; Zhao Y
    Clin Cancer Res; 2017 May; 23(9):2255-2266. PubMed ID: 27815355
    [No Abstract]   [Full Text] [Related]  

  • 8. Genome-Edited T Cell Therapies.
    Ottaviano G; Qasim W
    Hematol Oncol Clin North Am; 2022 Aug; 36(4):729-744. PubMed ID: 35773047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 10. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 Ribonucleoprotein Complex-Mediated Efficient B2M Knockout in Human Induced Pluripotent Stem Cells (iPSCs).
    Thongsin N; Wattanapanitch M
    Methods Mol Biol; 2022; 2454():607-624. PubMed ID: 33945142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment.
    Mollanoori H; Shahraki H; Rahmati Y; Teimourian S
    Hum Immunol; 2018 Dec; 79(12):876-882. PubMed ID: 30261221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with Enhanced Immune Compatibility.
    Xu H; Wang B; Ono M; Kagita A; Fujii K; Sasakawa N; Ueda T; Gee P; Nishikawa M; Nomura M; Kitaoka F; Takahashi T; Okita K; Yoshida Y; Kaneko S; Hotta A
    Cell Stem Cell; 2019 Apr; 24(4):566-578.e7. PubMed ID: 30853558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [CRISPR-Cas9 mediated genome editing in Caenorhabditis elegans].
    Meng X; Zhou H; Xu S
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1693-1699. PubMed ID: 29082717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency.
    Jensen KT; Fløe L; Petersen TS; Huang J; Xu F; Bolund L; Luo Y; Lin L
    FEBS Lett; 2017 Jul; 591(13):1892-1901. PubMed ID: 28580607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9.
    Ren J; Zhao Y
    Protein Cell; 2017 Sep; 8(9):634-643. PubMed ID: 28434148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research progress of CRISPR-Cas9 system for gene therapy].
    Zhan C; Xia X
    Sheng Wu Gong Cheng Xue Bao; 2016 Jul; 32(7):861-869. PubMed ID: 29019208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of CRISPR/Cas associated technologies for cell transplant applications.
    Cowan PJ
    Curr Opin Organ Transplant; 2016 Oct; 21(5):461-6. PubMed ID: 27517504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.