These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33082621)

  • 1. A novel integrated quasi-zero stiffness vibration isolator for coupled translational and rotational vibrations.
    Ye K; Ji JC; Brown T
    Mech Syst Signal Process; 2021 Feb; 149():107340. PubMed ID: 33082621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on a nonlinear quasi-zero stiffness vibration isolator with a vibration absorber.
    Li SH; Liu N; Ding H
    Sci Prog; 2020; 103(3):36850420940891. PubMed ID: 32686995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotational isolation with neutrally buoyant suspension.
    Sunderland A; Lockwood R; Ju L; Blair DG
    Rev Sci Instrum; 2020 May; 91(5):054502. PubMed ID: 32486752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and analysis of a metal rubber vibration isolation system considering the nonlinear stiffness characteristics.
    Liu Y; Liu J; Pan G; Huang Q
    Rev Sci Instrum; 2023 Jan; 94(1):015105. PubMed ID: 36725566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The coupling analysis for the gimbal servo system of a control moment gyroscope considering the influence of a flexible vibration isolator.
    Pan S; Xu Z; Lu M; Chen L; Liang Z; Zhang J
    ISA Trans; 2023 Jun; 137():601-614. PubMed ID: 36803890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and analysis of a negative stiffness magnetic suspension vibration isolator with experimental investigations.
    Zhu Y; Li Q; Xu D; Hu C; Zhang M
    Rev Sci Instrum; 2012 Sep; 83(9):095108. PubMed ID: 23020420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry.
    Wang G; Wu K; Hu H; Li G; Wang LJ
    Rev Sci Instrum; 2016 Oct; 87(10):105101. PubMed ID: 27802743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MIMO adaptive control for suppression the vibrations of a nonlinear interconnected structure with abrupt changes in the excitation loads.
    Salighe S; Mohammadi H
    ISA Trans; 2020 Mar; 98():123-136. PubMed ID: 31515094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability and bifurcations of complex vibrations in a nonlinear brush-seal rotor system.
    Xu Y; Zhao R; Jiao Y; Chen Z
    Chaos; 2023 Mar; 33(3):033113. PubMed ID: 37003814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High performance rotational vibration isolator.
    Sunderland A; Blair DG; Ju L; Golden H; Torres F; Chen X; Lockwood R; Wolfgram P
    Rev Sci Instrum; 2013 Oct; 84(10):105111. PubMed ID: 24182167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Characteristics of Vertically Coupled Structures and the Design of a Decoupled Micro Gyroscope.
    Choi B; Lee SY; Kim T; Baek SS
    Sensors (Basel); 2008 Jun; 8(6):3706-3718. PubMed ID: 27879903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibration isolation by exploring bio-inspired structural nonlinearity.
    Wu Z; Jing X; Bian J; Li F; Allen R
    Bioinspir Biomim; 2015 Oct; 10(5):056015. PubMed ID: 26448392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Waveguides to Model the Dynamic Stiffness of Pre-Compressed Natural Rubber Vibration Isolators.
    Coja M; Kari L
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34070970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-static cyclic behavior of wire rope isolators: comprehensive experimental study and improved mathematical modeling.
    Leblouba M; Balaji PS; Muhammad ER
    Heliyon; 2022 Oct; 8(10):e10944. PubMed ID: 36247131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the dynamic stiffness of preloaded vibration isolators in the audible frequency range: modeling and experiments.
    Kari L
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):1909-21. PubMed ID: 12703703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sympodial tree-like structures: from small to large-amplitude vibrations.
    Kovacic I; Zukovic M; Radomirovic D
    Bioinspir Biomim; 2018 Jan; 13(2):026002. PubMed ID: 29176043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the frequency and muscle responses of the lumbar and thoracic spines of seated volunteers during sinusoidal whole body vibration.
    Baig HA; Dorman DB; Bulka BA; Shivers BL; Chancey VC; Winkelstein BA
    J Biomech Eng; 2014 Oct; 136(10):101002. PubMed ID: 25010637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor.
    Dobrev I; Sim JH; Aqtashi B; Huber AM; Linder T; Röösli C
    Hear Res; 2018 Jan; 357():1-9. PubMed ID: 29149722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamically variable negative stiffness structures.
    Churchill CB; Shahan DW; Smith SP; Keefe AC; McKnight GP
    Sci Adv; 2016 Feb; 2(2):e1500778. PubMed ID: 26989771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Note: A component-level frequency tunable isolator for vibration-sensitive chips using SMA beams.
    Zhang X; Ding X; Wu D; Qi J; Wang R; Lu S; Yan X
    Rev Sci Instrum; 2016 Jun; 87(6):066106. PubMed ID: 27370507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.