These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33083543)

  • 1. Data-driven discovery of probable Alzheimer's disease and related dementia subphenotypes using electronic health records.
    Xu J; Wang F; Xu Z; Adekkanattu P; Brandt P; Jiang G; Kiefer RC; Luo Y; Mao C; Pacheco JA; Rasmussen LV; Zhang Y; Isaacson R; Pathak J
    Learn Health Syst; 2020 Oct; 4(4):e10246. PubMed ID: 33083543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subphenotyping depression using machine learning and electronic health records.
    Xu Z; Wang F; Adekkanattu P; Bose B; Vekaria V; Brandt P; Jiang G; Kiefer RC; Luo Y; Pacheco JA; Rasmussen LV; Xu J; Alexopoulos G; Pathak J
    Learn Health Syst; 2020 Oct; 4(4):e10241. PubMed ID: 33083540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting time-evolving phenotypic topics via tensor factorization on electronic health records: Cardiovascular disease case study.
    Zhao J; Zhang Y; Schlueter DJ; Wu P; Eric Kerchberger V; Trent Rosenbloom S; Wells QS; Feng Q; Denny JC; Wei WQ
    J Biomed Inform; 2019 Oct; 98():103270. PubMed ID: 31445983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population-based machine-learning study.
    You J; Zhang YR; Wang HF; Yang M; Feng JF; Yu JT; Cheng W
    EClinicalMedicine; 2022 Nov; 53():101665. PubMed ID: 36187723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of Deep Learning for Subphenotype Identification in Sepsis-Associated Acute Kidney Injury.
    Chaudhary K; Vaid A; Duffy Á; Paranjpe I; Jaladanki S; Paranjpe M; Johnson K; Gokhale A; Pattharanitima P; Chauhan K; O'Hagan R; Van Vleck T; Coca SG; Cooper R; Glicksberg B; Bottinger EP; Chan L; Nadkarni GN
    Clin J Am Soc Nephrol; 2020 Nov; 15(11):1557-1565. PubMed ID: 33033164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint Modeling of Social Determinants and Clinical Factors to Define Subphenotypes in Out-of-Hospital Cardiac Arrest Survival: Cluster Analysis.
    Abbott EE; Oh W; Dai Y; Feuer C; Chan L; Carr BG; Nadkarni GN
    JMIR Aging; 2023 Dec; 6():e51844. PubMed ID: 38059569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal respiratory subphenotypes in patients with COVID-19-related acute respiratory distress syndrome: results from three observational cohorts.
    Bos LDJ; Sjoding M; Sinha P; Bhavani SV; Lyons PG; Bewley AF; Botta M; Tsonas AM; Serpa Neto A; Schultz MJ; Dickson RP; Paulus F;
    Lancet Respir Med; 2021 Dec; 9(12):1377-1386. PubMed ID: 34653374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cohort discovery and risk stratification for Alzheimer's disease: an electronic health record-based approach.
    Tjandra D; Migrino RQ; Giordani B; Wiens J
    Alzheimers Dement (N Y); 2020; 6(1):e12035. PubMed ID: 32548236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of a Clinical Trial-Derived Survival Model in Patients With Metastatic Castration-Resistant Prostate Cancer.
    Coquet J; Bievre N; Billaut V; Seneviratne M; Magnani CJ; Bozkurt S; Brooks JD; Hernandez-Boussard T
    JAMA Netw Open; 2021 Jan; 4(1):e2031730. PubMed ID: 33481032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation.
    Du Z; Yang Y; Zheng J; Li Q; Lin D; Li Y; Fan J; Cheng W; Chen XH; Cai Y
    JMIR Med Inform; 2020 Jul; 8(7):e17257. PubMed ID: 32628616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leveraging multi-site electronic health data for characterization of subtypes: a pilot study of dementia in the N3C Clinical Tenant.
    Sharma S; Liu J; Abramowitz AC; Geary CR; Johnston KC; Manning C; Van Horn JD; Zhou A; Anzalone AJ; Loomba J; Pfaff E; Brown D
    JAMIA Open; 2024 Oct; 7(3):ooae076. PubMed ID: 39132679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation.
    Vaid A; Somani S; Russak AJ; De Freitas JK; Chaudhry FF; Paranjpe I; Johnson KW; Lee SJ; Miotto R; Richter F; Zhao S; Beckmann ND; Naik N; Kia A; Timsina P; Lala A; Paranjpe M; Golden E; Danieletto M; Singh M; Meyer D; O'Reilly PF; Huckins L; Kovatch P; Finkelstein J; Freeman RM; Argulian E; Kasarskis A; Percha B; Aberg JA; Bagiella E; Horowitz CR; Murphy B; Nestler EJ; Schadt EE; Cho JH; Cordon-Cardo C; Fuster V; Charney DS; Reich DL; Bottinger EP; Levin MA; Narula J; Fayad ZA; Just AC; Charney AW; Nadkarni GN; Glicksberg BS
    J Med Internet Res; 2020 Nov; 22(11):e24018. PubMed ID: 33027032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical subphenotypes in COVID-19: derivation, validation, prediction, temporal patterns, and interaction with social determinants of health.
    Su C; Zhang Y; Flory JH; Weiner MG; Kaushal R; Schenck EJ; Wang F
    NPJ Digit Med; 2021 Jul; 4(1):110. PubMed ID: 34262117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering Clinical Risk Factors and Predicting Severe COVID-19 Cases Using UK Biobank Data: Machine Learning Approach.
    Wong KC; Xiang Y; Yin L; So HC
    JMIR Public Health Surveill; 2021 Sep; 7(9):e29544. PubMed ID: 34591027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting 5-year dementia conversion in veterans with mild cognitive impairment.
    Irwin C; Tjandra D; Hu C; Aggarwal V; Lienau A; Giordani B; Wiens J; Migrino RQ
    Alzheimers Dement (Amst); 2024; 16(1):e12572. PubMed ID: 38545542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and validation of a federated learning framework for detection of subphenotypes of multisystem inflammatory syndrome in children.
    Jing N; Liu X; Wu Q; Rao S; Mejias A; Maltenfort M; Schuchard J; Lorman V; Razzaghi H; Webb R; Zhou C; Jhaveri R; Lee GM; Pajor NM; Thacker D; Charles Bailey L; Forrest CB; Chen Y
    medRxiv; 2024 Jan; ():. PubMed ID: 38343837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).
    Ritchie C; Smailagic N; Noel-Storr AH; Ukoumunne O; Ladds EC; Martin S
    Cochrane Database Syst Rev; 2017 Mar; 3(3):CD010803. PubMed ID: 28328043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Machine Learning for Clinical Subphenotype Identification in Sepsis.
    Hu C; Li Y; Wang F; Peng Z
    Infect Dis Ther; 2022 Oct; 11(5):1949-1964. PubMed ID: 36006560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Effectiveness of Machine Learning Approaches for Predicting Gastrointestinal Bleeds in Patients Receiving Antithrombotic Treatment.
    Herrin J; Abraham NS; Yao X; Noseworthy PA; Inselman J; Shah ND; Ngufor C
    JAMA Netw Open; 2021 May; 4(5):e2110703. PubMed ID: 34019087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining phenome-driven drug-target interaction prediction with patients' electronic health records-based clinical corroboration toward drug discovery.
    Zhou M; Zheng C; Xu R
    Bioinformatics; 2020 Jul; 36(Suppl_1):i436-i444. PubMed ID: 32657406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.