BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33083859)

  • 1. Increasement of O-acetylhomoserine production in Escherichia coli by modification of glycerol-oxidative pathway coupled with optimization of fermentation.
    Liu P; Liu JS; Zhang B; Liu ZQ; Zheng YG
    Biotechnol Lett; 2021 Jan; 43(1):105-117. PubMed ID: 33083859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Protein and Metabolic Engineering Strategies for High-Level Production of O-Acetylhomoserine in Escherichia coli.
    Wei L; Wang Q; Xu N; Cheng J; Zhou W; Han G; Jiang H; Liu J; Ma Y
    ACS Synth Biol; 2019 May; 8(5):1153-1167. PubMed ID: 30973696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced O-succinyl-l-homoserine production by recombinant Escherichia coli ΔIJBB*TrcmetL/pTrc-metA
    Zhu WY; Niu K; Liu P; Fan YH; Liu ZQ; Zheng YG
    J Appl Microbiol; 2021 Jun; 130(6):1960-1971. PubMed ID: 33025634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
    Rittmann D; Lindner SN; Wendisch VF
    Appl Environ Microbiol; 2008 Oct; 74(20):6216-22. PubMed ID: 18757581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation.
    Wang C; Cai H; Chen Z; Zhou Z
    Biotechnol Lett; 2016 Oct; 38(10):1791-7. PubMed ID: 27395064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dihydroxyacetone production in an engineered Escherichia coli through expression of Corynebacterium glutamicum dihydroxyacetone phosphate dephosphorylase.
    Jain VK; Tear CJ; Lim CY
    Enzyme Microb Technol; 2016 May; 86():39-44. PubMed ID: 26992791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of key genes through the constructed CRISPR-dcas9 to facilitate the efficient production of O-acetylhomoserine in
    Li N; Shan X; Zhou J; Yu S
    Front Bioeng Biotechnol; 2022; 10():978686. PubMed ID: 36185436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol.
    Wang ZW; Saini M; Lin LJ; Chiang CJ; Chao YP
    J Agric Food Chem; 2015 Nov; 63(43):9583-9. PubMed ID: 26477354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing L-homoserine production in Escherichia coli by engineering the central metabolic pathways.
    Liu M; Lou J; Gu J; Lyu XM; Wang FQ; Wei DZ
    J Biotechnol; 2020 May; 314-315():1-7. PubMed ID: 32251699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O-Acetyl-L-homoserine production enhanced by pathway strengthening and acetate supplementation in Corynebacterium glutamicum.
    Li N; Zeng W; Zhou J; Xu S
    Biotechnol Biofuels Bioprod; 2022 Mar; 15(1):27. PubMed ID: 35287716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose.
    Chen Z; Huang J; Wu Y; Wu W; Zhang Y; Liu D
    Metab Eng; 2017 Jan; 39():151-158. PubMed ID: 27918882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing a Novel Biosynthetic Pathway for the Production of Glycolate from Glycerol in
    Zhan T; Chen Q; Zhang C; Bi C; Zhang X
    ACS Synth Biol; 2020 Sep; 9(9):2600-2609. PubMed ID: 32794740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Improving β-carotene production in Escherichia coli by metabolic engineering of glycerol utilization pathway].
    Dong Y; Hu K; Li X; Li Q; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):247-260. PubMed ID: 28956381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced succinate production from glycerol by engineered Escherichia coli strains.
    Li Q; Wu H; Li Z; Ye Q
    Bioresour Technol; 2016 Oct; 218():217-23. PubMed ID: 27371794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of l-Methionine from 3-Methylthiopropionaldehyde and
    Wang H; Li Y; Che Y; Yang D; Wang Q; Yang H; Boutet J; Huet R; Yin S
    J Agric Food Chem; 2021 Jul; 69(28):7932-7937. PubMed ID: 34232654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Escherichia coli for production of valerenadiene.
    Nybo SE; Saunders J; McCormick SP
    J Biotechnol; 2017 Nov; 262():60-66. PubMed ID: 28988031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathway Construction in Corynebacterium glutamicum and Strain Engineering To Produce Rare Sugars from Glycerol.
    Yang J; Zhu Y; Men Y; Sun S; Zeng Y; Zhang Y; Sun Y; Ma Y
    J Agric Food Chem; 2016 Dec; 64(50):9497-9505. PubMed ID: 27998065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of Phosphoserine Aminotransferase Increases the Conversion of l-Homoserine to 4-Hydroxy-2-ketobutyrate in a Glycerol-Independent Pathway of 1,3-Propanediol Production from Glucose.
    Zhang Y; Ma C; Dischert W; Soucaille P; Zeng AP
    Biotechnol J; 2019 Sep; 14(9):e1900003. PubMed ID: 30925016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-level production of 3-hydroxypropionic acid from glycerol as a sole carbon source using metabolically engineered Escherichia coli.
    Kim JW; Ko YS; Chae TU; Lee SY
    Biotechnol Bioeng; 2020 Jul; 117(7):2139-2152. PubMed ID: 32227471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.