These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 33083865)
1. Frequency-lowering processing to improve speech-in-noise intelligibility in patients with age-related hearing loss. Bruno R; Freni F; Portelli D; Alberti G; Gazia F; Meduri A; Galletti F; Galletti B Eur Arch Otorhinolaryngol; 2021 Oct; 278(10):3697-3706. PubMed ID: 33083865 [TBL] [Abstract][Full Text] [Related]
2. Speech recognition performance of patients with sensorineural hearing loss under unaided and aided conditions using linear and compression hearing AIDS. Shanks JE; Wilson RH; Larson V; Williams D Ear Hear; 2002 Aug; 23(4):280-90. PubMed ID: 12195170 [TBL] [Abstract][Full Text] [Related]
3. Word recognition for temporally and spectrally distorted materials: the effects of age and hearing loss. Smith SL; Pichora-Fuller MK; Wilson RH; Macdonald EN Ear Hear; 2012; 33(3):349-66. PubMed ID: 22343546 [TBL] [Abstract][Full Text] [Related]
4. Efficacy of linear frequency transposition on consonant identification in quiet and in noise. Kuk F; Keenan D; Korhonen P; Lau CC J Am Acad Audiol; 2009 Sep; 20(8):465-79. PubMed ID: 19764167 [TBL] [Abstract][Full Text] [Related]
5. Speech intelligibility benefits of hearing AIDS at various input levels. Kuk F; Lau CC; Korhonen P; Crose B J Am Acad Audiol; 2015 Mar; 26(3):275-88. PubMed ID: 25751695 [TBL] [Abstract][Full Text] [Related]
6. Functional outcomes for speech-in-noise intelligibility of NAL-NL2 and DSL v.5 prescriptive fitting rules in hearing aid users. Portelli D; Loteta S; Ciodaro F; Salvago P; Galletti C; Freni L; Alberti G Eur Arch Otorhinolaryngol; 2024 Jun; 281(6):3227-3235. PubMed ID: 38546852 [TBL] [Abstract][Full Text] [Related]
7. Working memory, age, and hearing loss: susceptibility to hearing aid distortion. Arehart KH; Souza P; Baca R; Kates JM Ear Hear; 2013; 34(3):251-60. PubMed ID: 23291963 [TBL] [Abstract][Full Text] [Related]
8. Cochlear implant combined with a linear frequency transposing hearing aid. Hua H; Johansson B; Jönsson R; Magnusson L J Am Acad Audiol; 2012 Oct; 23(9):722-32. PubMed ID: 23072964 [TBL] [Abstract][Full Text] [Related]
9. Investigation of Extended Bandwidth Hearing Aid Amplification on Speech Intelligibility and Sound Quality in Adults with Mild-to-Moderate Hearing Loss. Seeto A; Searchfield GD J Am Acad Audiol; 2018 Mar; 29(3):243-254. PubMed ID: 29488874 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the NAL(R) and Cambridge formulae for the fitting of linear hearing aids. Peters RW; Moore BC; Glasberg BR; Stone MA Br J Audiol; 2000 Feb; 34(1):21-36. PubMed ID: 10759075 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners. Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441 [TBL] [Abstract][Full Text] [Related]
12. Spatial release from masking in normal-hearing children and children who use hearing aids. Ching TY; van Wanrooy E; Dillon H; Carter L J Acoust Soc Am; 2011 Jan; 129(1):368-75. PubMed ID: 21303017 [TBL] [Abstract][Full Text] [Related]
13. Bilateral cochlear implantation for hearing-impaired children: criterion of candidacy derived from an observational study. Lovett RE; Vickers DA; Summerfield AQ Ear Hear; 2015 Jan; 36(1):14-23. PubMed ID: 25170781 [TBL] [Abstract][Full Text] [Related]
14. Predicting Aided Outcome With Aided Word Recognition Scores Measured With Linear Amplification at Above-conversational Levels. Fereczkowski M; Neher T Ear Hear; 2023 Jan-Feb 01; 44(1):155-166. PubMed ID: 36006438 [TBL] [Abstract][Full Text] [Related]
15. The effects of frequency lowering on speech perception in noise with adult hearing-aid users. Miller CW; Bates E; Brennan M Int J Audiol; 2016; 55(5):305-12. PubMed ID: 26938846 [TBL] [Abstract][Full Text] [Related]
16. Relationship Among Signal Fidelity, Hearing Loss, and Working Memory for Digital Noise Suppression. Arehart K; Souza P; Kates J; Lunner T; Pedersen MS Ear Hear; 2015; 36(5):505-16. PubMed ID: 25985016 [TBL] [Abstract][Full Text] [Related]
17. Effects of transient noise reduction algorithms on speech intelligibility and ratings of hearing aid users. DiGiovanni JJ; Davlin EA; Nagaraj NK Am J Audiol; 2011 Dec; 20(2):140-50. PubMed ID: 21940982 [TBL] [Abstract][Full Text] [Related]
18. A comparison of two word-recognition tasks in multitalker babble: Speech Recognition in Noise Test (SPRINT) and Words-in-Noise Test (WIN). Wilson RH; Cates WB J Am Acad Audiol; 2008; 19(7):548-56. PubMed ID: 19248731 [TBL] [Abstract][Full Text] [Related]
19. A comparison of gain for adults from generic hearing aid prescriptive methods: impacts on predicted loudness, frequency bandwidth, and speech intelligibility. Johnson EE; Dillon H J Am Acad Audiol; 2011; 22(7):441-59. PubMed ID: 21993050 [TBL] [Abstract][Full Text] [Related]
20. [Rehabilitation of hearing impaired elderly patients by means of hearing aids with frequency lowering technology.]. Boboshko MY; Berdnikova IP; Maltseva NV; Garbaruk ES; Korotkov YV Adv Gerontol; 2018; 31(4):563-568. PubMed ID: 30607921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]