BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 33083898)

  • 1. Responses of plant biomass and yield component in rice, wheat, and maize to climatic warming: a meta-analysis.
    Liu X; Ma Q; Yu H; Li Y; Zhou L; He Q; Xu Z; Zhou G
    Planta; 2020 Oct; 252(5):90. PubMed ID: 33083898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How does climate change affect potential yields of four staple grain crops worldwide by 2030?
    Cai C; Lv L; Wei S; Zhang L; Cao W
    PLoS One; 2024; 19(5):e0303857. PubMed ID: 38820516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China.
    Zhao J; Pu F; Li Y; Xu J; Li N; Zhang Y; Guo J; Pan Z
    PLoS One; 2017; 12(11):e0185690. PubMed ID: 29099842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.
    Tian Y; Zheng C; Chen J; Chen C; Deng A; Song Z; Zhang B; Zhang W
    PLoS One; 2014; 9(4):e95108. PubMed ID: 24736557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crop rotational diversity can mitigate climate-induced grain yield losses.
    Costa A; Bommarco R; Smith ME; Bowles T; Gaudin ACM; Watson CA; Alarcón R; Berti A; Blecharczyk A; Calderon FJ; Culman S; Deen W; Drury CF; Garcia Y Garcia A; García-Díaz A; Hernández Plaza E; Jonczyk K; Jäck O; Navarrete Martínez L; Montemurro F; Morari F; Onofri A; Osborne SL; Tenorio Pasamón JL; Sandström B; Santín-Montanyá I; Sawinska Z; Schmer MR; Stalenga J; Strock J; Tei F; Topp CFE; Ventrella D; Walker RL; Vico G
    Glob Chang Biol; 2024 May; 30(5):e17298. PubMed ID: 38712640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yield reduction under climate warming varies among wheat cultivars in South Africa.
    Shew AM; Tack JB; Nalley LL; Chaminuka P
    Nat Commun; 2020 Sep; 11(1):4408. PubMed ID: 32879311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A framework for assessing the impacts of land-use/cover change and climate change on wheat productivity under 1.5 and 2.0 °C warming at watershed scale.
    Sun H; Wang L
    J Sci Food Agric; 2024 Apr; 104(6):3517-3531. PubMed ID: 38146054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moderately reducing N input to mitigate heat stress in maize.
    Zhou Y; Liu M; Chu S; Sun J; Wang Y; Liao S; Wang P; Huang S
    Sci Total Environ; 2024 Jul; 933():173143. PubMed ID: 38735336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate-resilient strategies for sustainable management of water resources and agriculture.
    Srivastav AL; Dhyani R; Ranjan M; Madhav S; Sillanpää M
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):41576-41595. PubMed ID: 34097218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The global dataset of historical yields for major crops 1981-2016.
    Iizumi T; Sakai T
    Sci Data; 2020 Mar; 7(1):97. PubMed ID: 32198349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Season Affects Yield and Metabolic Profiles of Rice (
    Schaarschmidt S; Lawas LMF; Glaubitz U; Li X; Erban A; Kopka J; Jagadish SVK; Hincha DK; Zuther E
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32366031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time emulation of future global warming reveals realistic impacts on the phenological response and quality deterioration in rice.
    Itoh H; Yamashita H; Wada KC; Yonemaru JI
    Proc Natl Acad Sci U S A; 2024 May; 121(21):e2316497121. PubMed ID: 38739807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endophytic Fungi from the Four Staple Crops and Their Secondary Metabolites.
    Fan Y; Shi B
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk Assessment of
    Li M; Jin Z; Qi Y; Zhao H; Yang N; Guo J; Chen B; Xian X; Liu W
    Insects; 2024 May; 15(5):. PubMed ID: 38786904
    [No Abstract]   [Full Text] [Related]  

  • 15. Eco-physiology of maize crops under combined stresses.
    Cagnola JI; D'Andrea KE; Rotili DH; Mercau JL; Ploschuk EL; Maddonni GA; Otegui ME; Casal JJ
    Plant J; 2024 Mar; 117(6):1856-1872. PubMed ID: 38113327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of Yield and Photosynthetic Characteristics of Rice to Climate Resources under Different Crop Rotation Patterns and Planting Methods.
    Yang H; Chen G; Li Z; Li W; Zhang Y; Li C; Hu M; He X; Zhang Q; Zhu C; Qing F; Wei X; Li T; Li X; Ouyang Y
    Plants (Basel); 2024 Feb; 13(4):. PubMed ID: 38498524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Elevated CO
    Wang X; Liu F
    Plants (Basel); 2021 May; 10(5):. PubMed ID: 34065412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The adaptability and irrigation constraints analysis of the WOFOST model for grain production in the Songhua River Basin.
    Li G; Chen W; Cui Y; Wang H; Chi Y
    J Sci Food Agric; 2024 May; ():. PubMed ID: 38822542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts and Risk Assessments of Climate Change for the Yields of the Major Grain Crops in China, Japan, and Korea.
    Chou J; Jin H; Xu Y; Zhao W; Li Y; Hao Y
    Foods; 2024 Mar; 13(6):. PubMed ID: 38540956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Neglecting to Including Cultivar-Specific Per Se Temperature Responses: Extending the Concept of Thermal Time in Field Crops.
    Roth L; Binder M; Kirchgessner N; Tschurr F; Yates S; Hund A; Kronenberg L; Walter A
    Plant Phenomics; 2024; 6():0185. PubMed ID: 38827955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.