These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33084243)

  • 1. Selective Hydrogenolysis of Erythritol over Ir-ReO
    Gu M; Liu L; Nakagawa Y; Li C; Tamura M; Shen Z; Zhou X; Zhang Y; Tomishige K
    ChemSusChem; 2021 Jan; 14(2):642-654. PubMed ID: 33084243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Re species and acid cocatalyst on Ir-ReOx /SiO2 in the C-O hydrogenolysis of biomass-derived substrates.
    Tomishige K; Tamura M; Nakagawa Y
    Chem Rec; 2014 Dec; 14(6):1041-54. PubMed ID: 25130666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Hydrodeoxygenation of Vegetable Oils and Waste Cooking Oils to Green Diesel Using a Silica-Supported Ir-ReO
    Liu S; Simonetti T; Zheng W; Saha B
    ChemSusChem; 2018 May; 11(9):1446-1454. PubMed ID: 29512941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of renewable hexanols from mechanocatalytically depolymerized cellulose by using Ir-ReOx /SiO2 catalyst.
    Liu S; Okuyama Y; Tamura M; Nakagawa Y; Imai A; Tomishige K
    ChemSusChem; 2015 Feb; 8(4):628-35. PubMed ID: 25366165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogenolysis of glycerol over TiO
    Wang Y; Zhou Z; Wang C; Zhao L; Xia Q
    Front Chem; 2022; 10():1004925. PubMed ID: 36212063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot conversion of sugar and sugar polyols to n-alkanes without C-C Dissociation over the Ir-ReOx /SiO2 catalyst combined with H-ZSM-5.
    Chen K; Tamura M; Yuan Z; Nakagawa Y; Tomishige K
    ChemSusChem; 2013 Apr; 6(4):613-21. PubMed ID: 23463694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of biobutanediols by the hydrogenolysis of erythritol.
    Amada Y; Watanabe H; Hirai Y; Kajikawa Y; Nakagawa Y; Tomishige K
    ChemSusChem; 2012 Oct; 5(10):1991-9. PubMed ID: 22865539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Highly Active Monometallic Rhenium Catalysts for Selective Synthesis of 1,4-Butanediol from 1,4-Anhydroerythritol.
    Wang T; Tamura M; Nakagawa Y; Tomishige K
    ChemSusChem; 2019 Aug; 12(15):3615-3626. PubMed ID: 31134740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress in Catalyst Development of the Hydrogenolysis of Biomass-Based Glycerol into Propanediols-A Review.
    Ma L; Liu H; He D
    Bioengineering (Basel); 2023 Oct; 10(11):. PubMed ID: 38002388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic Hydrodeoxygenation of High Carbon Furylmethanes to Renewable Jet-fuel Ranged Alkanes over a Rhenium-Modified Iridium Catalyst.
    Liu S; Dutta S; Zheng W; Gould NS; Cheng Z; Xu B; Saha B; Vlachos DG
    ChemSusChem; 2017 Aug; 10(16):3225-3234. PubMed ID: 28686334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of 2-Butanol by Selective Hydrogenolysis of 1,4-Anhydroerythritol over Molybdenum Oxide-Modified Rhodium-Supported Silica.
    Arai T; Tamura M; Nakagawa Y; Tomishige K
    ChemSusChem; 2016 Jul; 9(13):1680-8. PubMed ID: 27226396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Efficient Iridium-Iron-Molybdenum Catalysts Condensed on Boron Nitride for Biomass-Derived Diols' Hydrogenolysis to Secondary Monoalcohols.
    Liu B; Nakagawa Y; Yabushita M; Tomishige K
    J Am Chem Soc; 2024 Apr; 146(14):9984-10000. PubMed ID: 38557072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: role of oxide-metal interface and thermal stability.
    An K; Zhang Q; Alayoglu S; Musselwhite N; Shin JY; Somorjai GA
    Nano Lett; 2014 Aug; 14(8):4907-12. PubMed ID: 25078630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-Pot Conversion of Lignin into Naphthenes Catalyzed by a Heterogeneous Rhenium Oxide-Modified Iridium Compound.
    Li X; Zhang B; Pan X; Ji J; Ren Y; Wang H; Ji N; Liu Q; Li C
    ChemSusChem; 2020 Sep; 13(17):4409-4419. PubMed ID: 31944598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of support acidity during selective hydrogenolysis of glycerol over supported palladium-ruthenium catalysts.
    Guadix-Montero S; Santos-Hernandez A; Folli A; Sankar M
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2176):20200055. PubMed ID: 32623993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the impact of TiO
    Kim T; Nguyen-Phu H; Kwon T; Kang KH; Ro I
    Environ Pollut; 2023 Aug; 331(Pt 2):121876. PubMed ID: 37263565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient TiO
    Mondach W; Chanklang S; Somchuea P; Witoon T; Chareonpanich M; Faungnawakij K; Sohn H; Seubsai A
    Sci Rep; 2021 Nov; 11(1):23042. PubMed ID: 34845268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling Reaction Routes in Noble-Metal-Catalyzed Conversion of Aryl Ethers.
    Schmid J; Wang M; Gutiérrez OY; Bullock RM; Camaioni DM; Lercher JA
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202203172. PubMed ID: 35482977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-atom Ir
    Wang Y; Xu W; Chen X; Li C; Xie J; Yang Y; Zhu T; Zhang C
    J Hazard Mater; 2022 Jun; 432():128670. PubMed ID: 35290894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective hydrogenolysis of C-O bonds using the interaction of the catalyst surface and OH groups.
    Tomishige K; Nakagawa Y; Tamura M
    Top Curr Chem; 2014; 353():127-62. PubMed ID: 24699899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.