BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33084251)

  • 1. Laser Driven Miniature Diamond Implant for Wireless Retinal Prostheses.
    Ahnood A; Cheriton R; Bruneau A; Belcourt JA; Ndabakuranye JP; Lemaire W; Hilkes R; Fontaine R; Cook JPD; Hinzer K; Prawer S
    Adv Biosyst; 2020 Nov; 4(11):e2000055. PubMed ID: 33084251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wireless technologies for closed-loop retinal prostheses.
    Ng DC; Bai S; Yang J; Tran N; Skafidas E
    J Neural Eng; 2009 Dec; 6(6):065004. PubMed ID: 19850974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless power transfer to deep-tissue microimplants.
    Ho JS; Yeh AJ; Neofytou E; Kim S; Tanabe Y; Patlolla B; Beygui RE; Poon AS
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7974-9. PubMed ID: 24843161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless power delivery for retinal prostheses.
    Ng DC; Williams CE; Allen PJ; Bai S; Boyd CS; Meffin H; Halpern ME; Skafidas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8356-60. PubMed ID: 22256285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diamond encapsulated photovoltaics for transdermal power delivery.
    Ahnood A; Fox KE; Apollo NV; Lohrmann A; Garrett DJ; Nayagam DA; Karle T; Stacey A; Abberton KM; Morrison WA; Blakers A; Prawer S
    Biosens Bioelectron; 2016 Mar; 77():589-97. PubMed ID: 26476599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses.
    Lo YK; Chen K; Gad P; Liu W
    IEEE Trans Biomed Circuits Syst; 2013 Dec; 7(6):761-72. PubMed ID: 24473541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual band wireless power and data telemetry for retinal prosthesis.
    Wang G; Liu W; Sivaprakasam M; Zhou M; Weiland JD; Humayun MS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4392-5. PubMed ID: 17946243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A custom designed chip to control an implantable stimulator and telemetry system for control of paralyzed muscles.
    Pourmehdi S; Strojnik P; Peckham H; Buckett J; Smith B
    Artif Organs; 1999 May; 23(5):396-8. PubMed ID: 10378927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards high-resolution retinal prostheses with direct optical addressing and inductive telemetry.
    Ha S; Khraiche ML; Akinin A; Jing Y; Damle S; Kuang Y; Bauchner S; Lo YH; Freeman WR; Silva GA; Cauwenberghs G
    J Neural Eng; 2016 Oct; 13(5):056008. PubMed ID: 27529371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dual band wireless power and FSK data telemetry for biomedical implants.
    Jung LH; Byrnes-Preston P; Hessler R; Lehmann T; Suaning GJ; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6597-600. PubMed ID: 18003537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A power and data link for a wireless-implanted neural recording system.
    Rush AD; Troyk PR
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3255-62. PubMed ID: 22922687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MagNI: A Magnetoelectrically Powered and Controlled Wireless Neurostimulating Implant.
    Yu Z; Chen JC; Alrashdan FT; Avants BW; He Y; Singer A; Robinson JT; Yang K
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1241-1252. PubMed ID: 33180732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Miniaturization of implantable wireless power receiver.
    Poon AS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3217-20. PubMed ID: 19964059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless and inductively powered implant for measuring electrocardiogram.
    Riistama J; Väisänen J; Heinisuo S; Harjunpää H; Arra S; Kokko K; Mäntylä M; Kaihilahti J; Heino P; Kellomäki M; Vainio O; Vanhala J; Lekkala J; Hyttinen J
    Med Biol Eng Comput; 2007 Dec; 45(12):1163-74. PubMed ID: 17929070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.
    Becerra-Fajardo L; Ivorra A
    PLoS One; 2015; 10(7):e0131666. PubMed ID: 26147771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wireless induction coils embedded in diamond for power transfer in medical implants.
    Sikder MKU; Fallon J; Shivdasani MN; Ganesan K; Seligman P; Garrett DJ
    Biomed Microdevices; 2017 Aug; 19(4):79. PubMed ID: 28844084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses.
    Ahnood A; Escudie MC; Cicione R; Abeyrathne CD; Ganesan K; Fox KE; Garrett DJ; Stacey A; Apollo NV; Lichter SG; Thomas CD; Tran N; Meffin H; Prawer S
    Biomed Microdevices; 2015; 17(3):9952. PubMed ID: 25877379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hermetic wireless subretinal neurostimulator for vision prostheses.
    Kelly SK; Shire DB; Chen J; Doyle P; Gingerich MD; Cogan SF; Drohan WA; Behan S; Theogarajan L; Wyatt JL; Rizzo JF
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3197-205. PubMed ID: 21859595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fully intraocular high-density self-calibrating epiretinal prosthesis.
    Monge M; Raj M; Nazari MH; Chang HC; Zhao Y; Weiland JD; Humayun MS; Tai YC; Emami A
    IEEE Trans Biomed Circuits Syst; 2013 Dec; 7(6):747-60. PubMed ID: 24473540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Design and optimization of wireless power and data transmission for visual prosthesis].
    Lei X; Wu K; Zhao L; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Nov; 37(6):427-31. PubMed ID: 24617214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.