These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 33084750)
1. Pseudophacopteron longicaudatum (Hemiptera) induces intralaminar leaf galls on Aspidosperma tomentosum (Apocynaceae): a qualitative and quantitative structural overview. Oliveira DC; Martini VC; Moreira ASFP; Fuzaro L; GonÇalves LA An Acad Bras Cienc; 2020; 92(suppl 2):e20181002. PubMed ID: 33084750 [TBL] [Abstract][Full Text] [Related]
2. Synchronism between Aspidosperma macrocarpon (Apocynaceae) resources allocation and the establishment of the gall inducer Pseudophacopteron sp. (Hemiptera: Psylloidea). Castro AC; Oliveira DC; Moreira AS; lsaias RM Rev Biol Trop; 2013 Dec; 61(4):1891-900. PubMed ID: 24432541 [TBL] [Abstract][Full Text] [Related]
3. Do Cecidomyiidae galls of Aspidosperma spruceanum (Apocynaceae) fit the pre-established cytological and histochemical patterns? Oliveira DC; Magalhães TA; Carneiro RG; Alvim MN; Isaias RM Protoplasma; 2010 Jun; 242(1-4):81-93. PubMed ID: 20306094 [TBL] [Abstract][Full Text] [Related]
4. Hemiptera-induced galls of Sapium glandulosum have histological and cytological compartmentalization created with a large amount of carbohydrate. Rosa LMP; Silva MS; da Silva Carneiro RG; Machado M; Kuster VC Protoplasma; 2024 May; 261(3):593-606. PubMed ID: 38195894 [TBL] [Abstract][Full Text] [Related]
5. Morphometric analysis of young petiole galls on the narrow-leaf cottonwood, Populus angustifolia, by the sugarbeet root aphid, Pemphigus betae. Richardson RA; Body M; Warmund MR; Schultz JC; Appel HM Protoplasma; 2017 Jan; 254(1):203-216. PubMed ID: 26739691 [TBL] [Abstract][Full Text] [Related]
6. Developmental anatomy and immunocytochemistry reveal the neo-ontogenesis of the leaf tissues of Psidium myrtoides (Myrtaceae) towards the globoid galls of Nothotrioza myrtoidis (Triozidae). Carneiro RG; Oliveira DC; Isaias RM Plant Cell Rep; 2014 Dec; 33(12):2093-106. PubMed ID: 25228569 [TBL] [Abstract][Full Text] [Related]
7. Cytological cycles and fates in Psidium myrtoides are altered towards new cell metabolism and functionalities by the galling activity of Nothotrioza myrtoidis. Carneiro RG; Isaias RM Protoplasma; 2015 Mar; 252(2):637-46. PubMed ID: 25272990 [TBL] [Abstract][Full Text] [Related]
8. Morphogenesis of galls induced by Baccharopelma dracunculifoliae (Hemiptera: Psyllidae) on Baccharis dracunculifolia (Asteraceae) leaves. Arduin M; Fernandes GW; Kraus JE Braz J Biol; 2005 Nov; 65(4):559-71. PubMed ID: 16532179 [TBL] [Abstract][Full Text] [Related]
10. Ontogenetic differences in sun and shade galls of Clinodiplosis profusa on Eugenia uniflora leaves and the cytological antioxidant mechanisms in gall cells. Marquesine RR; Canaveze Y; Ferreira BG Protoplasma; 2024 Jul; ():. PubMed ID: 39078416 [TBL] [Abstract][Full Text] [Related]
11. Is the oxidative stress caused by Aspidosperma spp. galls capable of altering leaf photosynthesis? de Oliveira DC; Isaias RM; Moreira AS; Magalhães TA; de Lemos-Filho JP Plant Sci; 2011 Mar; 180(3):489-95. PubMed ID: 21421396 [TBL] [Abstract][Full Text] [Related]
12. Epidermal and subepidermal changes during the formation of hairy galls induced by Eriophyidae on Avicennia schaueriana leaves. Nobrega LP; de Sá Haiad B; Ferreira BG Naturwissenschaften; 2023 Sep; 110(5):49. PubMed ID: 37737319 [TBL] [Abstract][Full Text] [Related]
14. Tetraneura ulmi (Hemiptera: Eriosomatinae) Induces Oxidative Stress and Alters Antioxidant Enzyme Activities in Elm Leaves. Kmiec K; Rubinowska K; Golan K Environ Entomol; 2018 Aug; 47(4):840-847. PubMed ID: 29672728 [TBL] [Abstract][Full Text] [Related]
15. Developmental pathway from leaves to galls induced by a sap-feeding insect on Schinus polygamus (Cav.) Cabrera (Anacardiaceae). Dias GG; Ferreira BG; Moreira GR; Isaias RM An Acad Bras Cienc; 2013 Mar; 85(1):187-200. PubMed ID: 23538957 [TBL] [Abstract][Full Text] [Related]
16. Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae). Formiga AT; Silveira FA; Fernandes GW; Isaias RM Plant Biol (Stuttg); 2015 Mar; 17(2):512-21. PubMed ID: 25124804 [TBL] [Abstract][Full Text] [Related]
17. Anatomical profiles validate gall morphospecies under similar morphotypes. Teixeira CT; Kuster VC; da Silva Carneiro RG; Cardoso JCF; Dos Santos Isaias RM J Plant Res; 2022 Jul; 135(4):593-608. PubMed ID: 35641669 [TBL] [Abstract][Full Text] [Related]
18. Aspidosperma species: A review of their chemistry and biological activities. de Almeida VL; Silva CG; Silva AF; Campana PRV; Foubert K; Lopes JCD; Pieters L J Ethnopharmacol; 2019 Mar; 231():125-140. PubMed ID: 30395977 [TBL] [Abstract][Full Text] [Related]
19. Cytological attributes of storage tissues in nematode and eriophyid galls: pectin and hemicellulose functional insights. Ferreira BG; Bragança GP; Isaias RMS Protoplasma; 2020 Jan; 257(1):229-244. PubMed ID: 31410590 [TBL] [Abstract][Full Text] [Related]
20. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development. Takeda S; Yoza M; Amano T; Ohshima I; Hirano T; Sato MH; Sakamoto T; Kimura S PLoS One; 2019; 14(10):e0223686. PubMed ID: 31647845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]