These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33085224)

  • 1. Impact of stress-response related transcription factor overexpression on lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae environmental isolates.
    Mertens JA; Skory CD; Nichols NN; Hector RE
    Biotechnol Prog; 2021 Mar; 37(2):e3094. PubMed ID: 33085224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae.
    Ma M; Liu ZL
    BMC Genomics; 2010 Nov; 11():660. PubMed ID: 21106074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.
    Sasano Y; Watanabe D; Ukibe K; Inai T; Ohtsu I; Shimoi H; Takagi H
    J Biosci Bioeng; 2012 Apr; 113(4):451-5. PubMed ID: 22178024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.
    Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion.
    Wu G; Xu Z; Jönsson LJ
    Microb Cell Fact; 2017 Nov; 16(1):199. PubMed ID: 29137634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Overexpression of a leucine transfer RNA gene tL(CAA)K improves the acetic acid tolerance of Saccharomyces cerevisiae].
    Zhao S; Yuan B; Wang X; Chen H; Zhao X; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4293-4302. PubMed ID: 34984875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress tolerance of a spore clone isolated from Shirakami kodama yeast depends on altered regulation of Msn2 leading to enhanced expression of ROS-degrading enzymes.
    Nakazawa N; Yanata H; Ito N; Kaneta E; Takahashi K
    J Gen Appl Microbiol; 2018 Sep; 64(4):149-157. PubMed ID: 29607878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol.
    Samakkarn W; Ratanakhanokchai K; Soontorngun N
    Appl Environ Microbiol; 2021 Jul; 87(16):e0058821. PubMed ID: 34105981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QTL analysis of natural Saccharomyces cerevisiae isolates reveals unique alleles involved in lignocellulosic inhibitor tolerance.
    de Witt RN; Kroukamp H; Van Zyl WH; Paulsen IT; Volschenk H
    FEMS Yeast Res; 2019 Aug; 19(5):. PubMed ID: 31276593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae.
    Nguyen TT; Iwaki A; Ohya Y; Izawa S
    J Biosci Bioeng; 2014 Jan; 117(1):33-8. PubMed ID: 23850265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF.
    Liu ZL; Ma M
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3473-3492. PubMed ID: 32103314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors.
    Cunha JT; Aguiar TQ; Romaní A; Oliveira C; Domingues L
    Bioresour Technol; 2015 Sep; 191():7-16. PubMed ID: 25974617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of inhibitor tolerance in Saccharomyces cerevisiae by overexpression of the quinone oxidoreductase family gene YCR102C.
    Chen H; Li J; Wan C; Fang Q; Bai F; Zhao X
    FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31374572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome response of two natural strains of Saccharomyces cerevisiae with divergent lignocellulosic inhibitor stress tolerance.
    de Witt RN; Kroukamp H; Volschenk H
    FEMS Yeast Res; 2019 Jan; 19(1):. PubMed ID: 30371771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress.
    Kim D; Hahn JS
    Appl Environ Microbiol; 2013 Aug; 79(16):5069-77. PubMed ID: 23793623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome shuffling to generate recombinant yeasts for tolerance to inhibitors present in lignocellulosic hydrolysates.
    Cheng C; Almario MP; Kao KC
    Biotechnol Lett; 2015 Nov; 37(11):2193-200. PubMed ID: 26112326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.
    Zhao X; Tang J; Wang X; Yang R; Zhang X; Gu Y; Li X; Ma M
    Yeast; 2015 May; 32(5):409-22. PubMed ID: 25656244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of nongenetic heterogeneity in growth rate and stress tolerance of Saccharomyces cerevisiae by cyclic AMP-regulated transcription factors.
    Li S; Giardina DM; Siegal ML
    PLoS Genet; 2018 Nov; 14(11):e1007744. PubMed ID: 30388117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance.
    Petersson A; Almeida JR; Modig T; Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF; Lidén G
    Yeast; 2006 Apr; 23(6):455-64. PubMed ID: 16652391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.