These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33085459)

  • 21. Effect of Ozone, Clothing, Temperature, and Humidity on the Total OH Reactivity Emitted from Humans.
    Zannoni N; Li M; Wang N; Ernle L; Bekö G; Wargocki P; Langer S; Weschler CJ; Morrison G; Williams J
    Environ Sci Technol; 2021 Oct; 55(20):13614-13624. PubMed ID: 34591444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the off-body squalene ozonolysis on indoor surfaces.
    Zhang M; Gao Y; Xiong J
    Chemosphere; 2022 Mar; 291(Pt 1):132772. PubMed ID: 34742760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactions and Products of Squalene and Ozone: A Review.
    Coffaro B; Weisel CP
    Environ Sci Technol; 2022 Jun; 56(12):7396-7411. PubMed ID: 35648815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observing ozone chemistry in an occupied residence.
    Liu Y; Misztal PK; Arata C; Weschler CJ; Nazaroff WW; Goldstein AH
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33526680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The health significance of gas- and particle-phase terpene oxidation products: a review.
    Rohr AC
    Environ Int; 2013 Oct; 60():145-62. PubMed ID: 24036325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Air ionization as a control technology for off-gas emissions of volatile organic compounds.
    Kim KH; Szulejko JE; Kumar P; Kwon EE; Adelodun AA; Reddy PAK
    Environ Pollut; 2017 Jun; 225():729-743. PubMed ID: 28347612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios.
    Youssefi S; Waring MS
    Environ Sci Technol; 2014 Jul; 48(14):7899-908. PubMed ID: 24940869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of ozone on nicotine desorption from model surfaces: evidence for heterogeneous chemistry.
    Destaillats H; Singer BC; Lee SK; Gundel LA
    Environ Sci Technol; 2006 Mar; 40(6):1799-805. PubMed ID: 16570600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting the rate constants of semivolatile organic compounds with hydroxyl radicals and ozone in indoor air.
    Wei W; Sivanantham S; Malingre L; Ramalho O; Mandin C
    Environ Pollut; 2020 Nov; 266(Pt 2):115050. PubMed ID: 32652384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical reactions among indoor pollutants: what we've learned in the new millennium.
    Weschler CJ
    Indoor Air; 2004; 14 Suppl 7():184-94. PubMed ID: 15330786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A study of the ozonolysis of model lipids by electrospray ionization mass spectrometry.
    Sun C; Zhao YY; Curtis JM
    Rapid Commun Mass Spectrom; 2012 Apr; 26(8):921-30. PubMed ID: 22396028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Connecting the Elementary Reaction Pathways of Criegee Intermediates to the Chemical Erosion of Squalene Interfaces during Ozonolysis.
    Heine N; Houle FA; Wilson KR
    Environ Sci Technol; 2017 Dec; 51(23):13740-13748. PubMed ID: 29120614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ozone in indoor environments: concentration and chemistry.
    Weschler CJ
    Indoor Air; 2000 Dec; 10(4):269-88. PubMed ID: 11089331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The formation of ultra-fine particles during ozone-initiated oxidations with terpenes emitted from natural paint.
    Lamorena RB; Jung SG; Bae GN; Lee W
    J Hazard Mater; 2007 Mar; 141(1):245-51. PubMed ID: 16908097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterogeneous reactions of ozone and D-limonene on activated carbon.
    Metts TA; Batterman SA
    Indoor Air; 2007 Oct; 17(5):362-71. PubMed ID: 17880632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Illuminating the dark side of indoor oxidants.
    Young CJ; Zhou S; Siegel JA; Kahan TF
    Environ Sci Process Impacts; 2019 Aug; 21(8):1229-1239. PubMed ID: 31173015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface chemistry reactions of alpha-terpineol [(R)-2-(4-methyl-3-cyclohexenyl)isopropanol] with ozone and air on a glass and a vinyl tile.
    Ham JE; Wells JR
    Indoor Air; 2008 Oct; 18(5):394-407. PubMed ID: 18647191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ATR-IR study of ozone initiated heterogeneous oxidation of squalene in an indoor environment.
    Fu D; Leng C; Kelley J; Zeng G; Zhang Y; Liu Y
    Environ Sci Technol; 2013 Sep; 47(18):10611-8. PubMed ID: 23957297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions.
    Fan Z; Lioy P; Weschler C; Fiedler N; Kipen H; Zhang J
    Environ Sci Technol; 2003 May; 37(9):1811-21. PubMed ID: 12775052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of oxidation products of solanesol produced during air sampling for tobacco smoke by electrospray mass spectrometry and HPLC.
    Tucker SP; Pretty JR
    Analyst; 2005 Oct; 130(10):1414-24. PubMed ID: 16172668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.