These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33085465)

  • 1. Comparison of Machine Learning Models for the Androgen Receptor.
    Zorn KM; Foil DH; Lane TR; Hillwalker W; Feifarek DJ; Jones F; Klaren WD; Brinkman AM; Ekins S
    Environ Sci Technol; 2020 Nov; 54(21):13690-13700. PubMed ID: 33085465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Models for Estrogen Receptor Bioactivity and Endocrine Disruption Prediction.
    Zorn KM; Foil DH; Lane TR; Russo DP; Hillwalker W; Feifarek DJ; Jones F; Klaren WD; Brinkman AM; Ekins S
    Environ Sci Technol; 2020 Oct; 54(19):12202-12213. PubMed ID: 32857505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development, validation and integration of in silico models to identify androgen active chemicals.
    Manganelli S; Roncaglioni A; Mansouri K; Judson RS; Benfenati E; Manganaro A; Ruiz P
    Chemosphere; 2019 Apr; 220():204-215. PubMed ID: 30584954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Validation of a Computational Model for Androgen Receptor Activity.
    Kleinstreuer NC; Ceger P; Watt ED; Martin M; Houck K; Browne P; Thomas RS; Casey WM; Dix DJ; Allen D; Sakamuru S; Xia M; Huang R; Judson R
    Chem Res Toxicol; 2017 Apr; 30(4):946-964. PubMed ID: 27933809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Consensus To Predict the Binding to the Androgen Receptor within the CoMPARA Project.
    Grisoni F; Consonni V; Ballabio D
    J Chem Inf Model; 2019 May; 59(5):1839-1848. PubMed ID: 30668916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing Machine Learning Models for Aromatase (P450 19A1).
    Zorn KM; Foil DH; Lane TR; Hillwalker W; Feifarek DJ; Jones F; Klaren WD; Brinkman AM; Ekins S
    Environ Sci Technol; 2020 Dec; 54(23):15546-15555. PubMed ID: 33207874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
    Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity.
    Mansouri K; Kleinstreuer N; Abdelaziz AM; Alberga D; Alves VM; Andersson PL; Andrade CH; Bai F; Balabin I; Ballabio D; Benfenati E; Bhhatarai B; Boyer S; Chen J; Consonni V; Farag S; Fourches D; GarcĂ­a-Sosa AT; Gramatica P; Grisoni F; Grulke CM; Hong H; Horvath D; Hu X; Huang R; Jeliazkova N; Li J; Li X; Liu H; Manganelli S; Mangiatordi GF; Maran U; Marcou G; Martin T; Muratov E; Nguyen DT; Nicolotti O; Nikolov NG; Norinder U; Papa E; Petitjean M; Piir G; Pogodin P; Poroikov V; Qiao X; Richard AM; Roncaglioni A; Ruiz P; Rupakheti C; Sakkiah S; Sangion A; Schramm KW; Selvaraj C; Shah I; Sild S; Sun L; Taboureau O; Tang Y; Tetko IV; Todeschini R; Tong W; Trisciuzzi D; Tropsha A; Van Den Driessche G; Varnek A; Wang Z; Wedebye EB; Williams AJ; Xie H; Zakharov AV; Zheng Z; Judson RS
    Environ Health Perspect; 2020 Feb; 128(2):27002. PubMed ID: 32074470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using in vitro high throughput screening assays to identify potential endocrine-disrupting chemicals.
    Rotroff DM; Dix DJ; Houck KA; Knudsen TB; Martin MT; McLaurin KW; Reif DM; Crofton KM; Singh AV; Xia M; Huang R; Judson RS
    Environ Health Perspect; 2013 Jan; 121(1):7-14. PubMed ID: 23052129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A big data approach with artificial neural network and molecular similarity for chemical data mining and endocrine disruption prediction.
    Paulose R; Jegatheesan K; Balakrishnan GS
    Indian J Pharmacol; 2018; 50(4):169-176. PubMed ID: 30505052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selecting a minimal set of androgen receptor assays for screening chemicals.
    Judson R; Houck K; Paul Friedman K; Brown J; Browne P; Johnston PA; Close DA; Mansouri K; Kleinstreuer N
    Regul Toxicol Pharmacol; 2020 Nov; 117():104764. PubMed ID: 32798611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of androgen assay results using a curated Hershberger database.
    Kleinstreuer NC; Browne P; Chang X; Judson R; Casey W; Ceger P; Deisenroth C; Baker N; Markey K; Thomas RS
    Reprod Toxicol; 2018 Oct; 81():272-280. PubMed ID: 30205137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery.
    Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S
    Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Mechanistic High-Content Analysis Assay Using a Chimeric Androgen Receptor That Rapidly Characterizes Androgenic Chemicals.
    Szafran AT; Bolt MJ; Obkirchner CE; Mancini MG; Helsen C; Claessens F; Stossi F; Mancini MA
    SLAS Discov; 2020 Aug; 25(7):695-708. PubMed ID: 32392092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening androgen receptor agonists of fish species using machine learning and molecular model in NORMAN water-relevant list.
    Long XB; Yao CR; Li SY; Zhang JG; Lu ZJ; Ma DD; Chen CE; Ying GG; Shi WJ
    J Hazard Mater; 2024 Apr; 468():133844. PubMed ID: 38394900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing Machine Learning Algorithms for Predicting Drug-Induced Liver Injury (DILI).
    Minerali E; Foil DH; Zorn KM; Lane TR; Ekins S
    Mol Pharm; 2020 Jul; 17(7):2628-2637. PubMed ID: 32422053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning models for predicting endocrine disruption potential of environmental chemicals.
    Chierici M; Giulini M; Bussola N; Jurman G; Furlanello C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):237-251. PubMed ID: 30628533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of OASIS QSAR Models Using ToxCast™ in Vitro Estrogen and Androgen Receptor Binding Data and Application in an Integrated Endocrine Screening Approach.
    Bhhatarai B; Wilson DM; Price PS; Marty S; Parks AK; Carney E
    Environ Health Perspect; 2016 Sep; 124(9):1453-61. PubMed ID: 27152837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data.
    Kim C; Jeong J; Choi J
    Chem Res Toxicol; 2022 Dec; 35(12):2219-2226. PubMed ID: 36475638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classifying chemical mode of action using gene networks and machine learning: a case study with the herbicide linuron.
    Ornostay A; Cowie AM; Hindle M; Baker CJ; Martyniuk CJ
    Comp Biochem Physiol Part D Genomics Proteomics; 2013 Dec; 8(4):263-74. PubMed ID: 24013142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.