These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33085609)

  • 1. Finite Class Bayesian Inference System for Circle and Linear Walking Gait Event Recognition Using Inertial Measurement Units.
    Sheng W; Zha F; Guo W; Qiu S; Sun L; Jia W
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2869-2879. PubMed ID: 33085609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilateral Elimination Rule-Based Finite Class Bayesian Inference System for Circular and Linear Walking Prediction.
    Sheng W; Gao T; Liang K; Wang Y
    Biomimetics (Basel); 2024 Apr; 9(5):. PubMed ID: 38786476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors.
    Martinez-Hernandez U; Dehghani-Sanij AA
    Neural Netw; 2018 Jun; 102():107-119. PubMed ID: 29567532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of gait events in walking activities with a Bayesian perception system.
    Martinez-Hernandez U; Awad MI; Mahmood I; Dehghani-Sanij AA
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():13-18. PubMed ID: 28813786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Probability Distribution Model-Based Approach for Foot Placement Prediction in the Early Swing Phase With a Wearable IMU Sensor.
    Chen X; Zhang K; Liu H; Leng Y; Fu C
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2595-2604. PubMed ID: 34874865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons.
    Su B; Liu YX; Gutierrez-Farewik EM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait Phase Detection in Walking and Stairs Using Machine Learning.
    Bauman VV; Brandon SCE
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36062965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait Event Detection in Controlled and Real-Life Situations: Repeated Measures From Healthy Subjects.
    Figueiredo J; Felix P; Costa L; Moreno JC; Santos CP
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1945-1956. PubMed ID: 30334739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stance and Swing Detection Based on the Angular Velocity of Lower Limb Segments During Walking.
    Grimmer M; Schmidt K; Duarte JE; Neuner L; Koginov G; Riener R
    Front Neurorobot; 2019; 13():57. PubMed ID: 31396072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Adaptable Human-Like Gait Pattern Generator Derived From a Lower Limb Exoskeleton.
    Mendoza-Crespo R; Torricelli D; Huegel JC; Gordillo JL; Pons JL; Soto R
    Front Robot AI; 2019; 6():36. PubMed ID: 33501052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Lightweight Exoskeleton-Based Portable Gait Data Collection System.
    Haque MR; Imtiaz MH; Kwak ST; Sazonov E; Chang YH; Shen X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Pedestrian Stride Estimation for Localization: From Multi-Gait Perspective.
    Huang C; Zhang F; Xu Z; Wei J
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing estimation for gait in water from inertial sensor measurements: Analysis of the performance of 17 algorithms.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Comput Methods Programs Biomed; 2020 Dec; 197():105703. PubMed ID: 32818913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the Most Appropriate Assistive Walking Device Using the Inertial Measurement Unit-Based Gait Analysis System in Disabled Patients.
    Lee J; Bae CH; Jang A; Yang S; Bae H
    Ann Rehabil Med; 2020 Feb; 44(1):48-57. PubMed ID: 32130838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substantiating Appropriate Motion Capture Techniques for the Assessment of Nordic Walking Gait and Posture in Older Adults.
    Dalton CM; Nantel J
    J Vis Exp; 2016 May; (111):. PubMed ID: 27214263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time gait event detection for lower limb amputees using a single wearable sensor.
    Maqbool HF; Husman MA; Awad MI; Abouhossein A; Mehryar P; Iqbal N; Dehghani-Sanij AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5067-5070. PubMed ID: 28269407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Walking pattern classification and walking distance estimation algorithms using gait phase information.
    Wang JS; Lin CW; Yang YT; Ho YJ
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2884-92. PubMed ID: 22893370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foot angular kinematics measured with inertial measurement units: A reliable criterion for real-time gait event detection.
    Nazarahari M; Khandan A; Khan A; Rouhani H
    J Biomech; 2022 Jan; 130():110880. PubMed ID: 34871897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring gait kinematics in patients with severe hip osteoarthritis using wearable sensors.
    Ismailidis P; Nüesch C; Kaufmann M; Clauss M; Pagenstert G; Eckardt A; Ilchmann T; Mündermann A
    Gait Posture; 2020 Sep; 81():49-55. PubMed ID: 32679463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.