These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33085673)

  • 1. Spiking neural state machine for gait frequency entrainment in a flexible modular robot.
    Spaeth A; Tebyani M; Haussler D; Teodorescu M
    PLoS One; 2020; 15(10):e0240267. PubMed ID: 33085673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust and reusable self-organized locomotion of legged robots under adaptive physical and neural communications.
    Sun T; Dai Z; Manoonpong P
    Front Neural Circuits; 2023; 17():1111285. PubMed ID: 37063383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromorphic walking gait control.
    Still S; Hepp K; Douglas RJ
    IEEE Trans Neural Netw; 2006 Mar; 17(2):496-508. PubMed ID: 16566475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning robust perceptive locomotion for quadrupedal robots in the wild.
    Miki T; Lee J; Hwangbo J; Wellhausen L; Koltun V; Hutter M
    Sci Robot; 2022 Jan; 7(62):eabk2822. PubMed ID: 35044798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General Distributed Neural Control and Sensory Adaptation for Self-Organized Locomotion and Fast Adaptation to Damage of Walking Robots.
    Miguel-Blanco A; Manoonpong P
    Front Neural Circuits; 2020; 14():46. PubMed ID: 32973461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A physical model of sensorimotor interactions during locomotion.
    Klein TJ; Lewis MA
    J Neural Eng; 2012 Aug; 9(4):046011. PubMed ID: 22766556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Spiking CPGs for Online Manipulation During Hexapod Walking.
    Strohmer B; Manoonpong P; Larsen LB
    Front Neurorobot; 2020; 14():41. PubMed ID: 32676022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion.
    Arena P; Fortuna L; Frasca M; Sicurella G
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1823-37. PubMed ID: 15462448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quadrupedal Robot Locomotion: A Biologically Inspired Approach and Its Hardware Implementation.
    Espinal A; Rostro-Gonzalez H; Carpio M; Guerra-Hernandez EI; Ornelas-Rodriguez M; Puga-Soberanes HJ; Sotelo-Figueroa MA; Melin P
    Comput Intell Neurosci; 2016; 2016():5615618. PubMed ID: 27436997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment.
    Taga G; Yamaguchi Y; Shimizu H
    Biol Cybern; 1991; 65(3):147-59. PubMed ID: 1912008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treadmill vs. overground walking: different response to physical interaction.
    Ochoa J; Sternad D; Hogan N
    J Neurophysiol; 2017 Oct; 118(4):2089-2102. PubMed ID: 28701533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolving locomotion for a 12-DOF quadruped robot in simulated environments.
    Klaus G; Glette K; Høvin M
    Biosystems; 2013 May; 112(2):102-6. PubMed ID: 23499813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot.
    Moro FL; Spröwitz A; Tuleu A; Vespignani M; Tsagarakis NG; Ijspeert AJ; Caldwell DG
    Biol Cybern; 2013 Jun; 107(3):309-20. PubMed ID: 23463501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of dynamic entrainment with ankle mechanical perturbation to treat locomotor deficit.
    Ahn J; Hogan N
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3422-5. PubMed ID: 21097251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.
    Barron-Zambrano JH; Torres-Huitzil C
    Neural Netw; 2013 Sep; 45():50-61. PubMed ID: 23631905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Organizing Map With Time-Varying Structure to Plan and Control Artificial Locomotion.
    Araujo AF; Santana OV
    IEEE Trans Neural Netw Learn Syst; 2015 Aug; 26(8):1594-607. PubMed ID: 25203996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots.
    Ijspeert AJ; Crespi A; Cabelguen JM
    Neuroinformatics; 2005; 3(3):171-95. PubMed ID: 16077158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution and analysis of model CPGs for walking: II. General principles and individual variability.
    Beer RD; Chiel HJ; Gallagher JC
    J Comput Neurosci; 1999; 7(2):119-47. PubMed ID: 10515251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.