These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 33085804)
1. Neoxanthin affects the stability of the C Tu W; Wu L; Zhang C; Sun R; Wang L; Yang W; Yang C; Liu C Plant J; 2020 Dec; 104(6):1724-1735. PubMed ID: 33085804 [TBL] [Abstract][Full Text] [Related]
2. Monomeric light harvesting complexes enhance excitation energy transfer from LHCII to PSII and control their lateral spacing in thylakoids. Dall'Osto L; Cazzaniga S; Zappone D; Bassi R Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148035. PubMed ID: 31226317 [TBL] [Abstract][Full Text] [Related]
3. Arabidopsis thylakoid formation 1 is a critical regulator for dynamics of PSII-LHCII complexes in leaf senescence and excess light. Huang W; Chen Q; Zhu Y; Hu F; Zhang L; Ma Z; He Z; Huang J Mol Plant; 2013 Sep; 6(5):1673-91. PubMed ID: 23671330 [TBL] [Abstract][Full Text] [Related]
4. The PsbW protein stabilizes the supramolecular organization of photosystem II in higher plants. García-Cerdán JG; Kovács L; Tóth T; Kereïche S; Aseeva E; Boekema EJ; Mamedov F; Funk C; Schröder WP Plant J; 2011 Feb; 65(3):368-81. PubMed ID: 21265891 [TBL] [Abstract][Full Text] [Related]
5. During state 1 to state 2 transition in Arabidopsis thaliana, the photosystem II supercomplex gets phosphorylated but does not disassemble. Wientjes E; Drop B; Kouřil R; Boekema EJ; Croce R J Biol Chem; 2013 Nov; 288(46):32821-6. PubMed ID: 24097972 [TBL] [Abstract][Full Text] [Related]
6. PHOTOSYSTEM II PROTEIN33, a protein conserved in the plastid lineage, is associated with the chloroplast thylakoid membrane and provides stability to photosystem II supercomplexes in Arabidopsis. Fristedt R; Herdean A; Blaby-Haas CE; Mamedov F; Merchant SS; Last RL; Lundin B Plant Physiol; 2015 Feb; 167(2):481-92. PubMed ID: 25511433 [TBL] [Abstract][Full Text] [Related]
7. Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery - including both photosystems II and I. Grieco M; Suorsa M; Jajoo A; Tikkanen M; Aro EM Biochim Biophys Acta; 2015; 1847(6-7):607-19. PubMed ID: 25843550 [TBL] [Abstract][Full Text] [Related]
8. Dynamic reorganization of photosystem II supercomplexes in response to variations in light intensities. Albanese P; Manfredi M; Meneghesso A; Marengo E; Saracco G; Barber J; Morosinotto T; Pagliano C Biochim Biophys Acta; 2016 Oct; 1857(10):1651-60. PubMed ID: 27378191 [TBL] [Abstract][Full Text] [Related]
9. Arabidopsis PsbP-Like Protein 1 Facilitates the Assembly of the Photosystem II Supercomplexes and Optimizes Plant Fitness under Fluctuating Light. Che Y; Kusama S; Matsui S; Suorsa M; Nakano T; Aro EM; Ifuku K Plant Cell Physiol; 2020 Jun; 61(6):1168-1180. PubMed ID: 32277833 [TBL] [Abstract][Full Text] [Related]
10. Photosystem II supercomplex remodeling serves as an entry mechanism for state transitions in Arabidopsis. Dietzel L; Bräutigam K; Steiner S; Schüffler K; Lepetit B; Grimm B; Schöttler MA; Pfannschmidt T Plant Cell; 2011 Aug; 23(8):2964-77. PubMed ID: 21880991 [TBL] [Abstract][Full Text] [Related]
11. Consequences of state transitions on the structural and functional organization of photosystem I in the green alga Chlamydomonas reinhardtii. Drop B; Yadav K N S; Boekema EJ; Croce R Plant J; 2014 Apr; 78(2):181-91. PubMed ID: 24506306 [TBL] [Abstract][Full Text] [Related]
12. Structural variability of plant photosystem II megacomplexes in thylakoid membranes. Nosek L; Semchonok D; Boekema EJ; Ilík P; Kouřil R Plant J; 2017 Jan; 89(1):104-111. PubMed ID: 27598242 [TBL] [Abstract][Full Text] [Related]
13. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Sacharz J; Giovagnetti V; Ungerer P; Mastroianni G; Ruban AV Nat Plants; 2017 Jan; 3():16225. PubMed ID: 28134919 [TBL] [Abstract][Full Text] [Related]
14. Multimeric and monomeric photosystem II supercomplexes represent structural adaptations to low- and high-light conditions. Kim E; Watanabe A; Duffy CDP; Ruban AV; Minagawa J J Biol Chem; 2020 Oct; 295(43):14537-14545. PubMed ID: 32561642 [TBL] [Abstract][Full Text] [Related]
15. Modeling the Role of LHCII-LHCII, PSII-LHCII, and PSI-LHCII Interactions in State Transitions. Wood WHJ; Johnson MP Biophys J; 2020 Jul; 119(2):287-299. PubMed ID: 32621865 [TBL] [Abstract][Full Text] [Related]
16. Proteomic characterization and three-dimensional electron microscopy study of PSII-LHCII supercomplexes from higher plants. Pagliano C; Nield J; Marsano F; Pape T; Barera S; Saracco G; Barber J Biochim Biophys Acta; 2014 Sep; 1837(9):1454-62. PubMed ID: 24246636 [TBL] [Abstract][Full Text] [Related]
17. Comparative Analysis of Light-Harvesting Antennae and State Transition in chlorina and cpSRP Mutants. Wang P; Grimm B Plant Physiol; 2016 Nov; 172(3):1519-1531. PubMed ID: 27663408 [TBL] [Abstract][Full Text] [Related]
18. Proteomic characterization of hierarchical megacomplex formation in Arabidopsis thylakoid membrane. Rantala M; Tikkanen M; Aro EM Plant J; 2017 Dec; 92(5):951-962. PubMed ID: 28980426 [TBL] [Abstract][Full Text] [Related]
19. Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Kovács L; Damkjaer J; Kereïche S; Ilioaia C; Ruban AV; Boekema EJ; Jansson S; Horton P Plant Cell; 2006 Nov; 18(11):3106-20. PubMed ID: 17114352 [TBL] [Abstract][Full Text] [Related]
20. How paired PSII-LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass-spectrometry. Albanese P; Tamara S; Saracco G; Scheltema RA; Pagliano C Nat Commun; 2020 Mar; 11(1):1361. PubMed ID: 32170184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]