BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33085989)

  • 1. Preparation of Mammalian Nascent RNA for Long Read Sequencing.
    Reimer KA; Neugebauer KM
    Curr Protoc Mol Biol; 2020 Dec; 133(1):e128. PubMed ID: 33085989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Detailed Protocol for Subcellular RNA Sequencing (subRNA-seq).
    Mayer A; Churchman LS
    Curr Protoc Mol Biol; 2017 Oct; 120():4.29.1-4.29.18. PubMed ID: 28967997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing nascent RNA processing dynamics with nano-COP.
    Drexler HL; Choquet K; Merens HE; Tang PS; Simpson JT; Churchman LS
    Nat Protoc; 2021 Mar; 16(3):1343-1375. PubMed ID: 33514943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of nascent RNA sequencing methods and their applications in studies of cotranscriptional splicing dynamics.
    Liu M; Zhu J; Huang H; Chen Y; Dong Z
    Plant Cell; 2023 Nov; 35(12):4304-4324. PubMed ID: 37708036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcript Profiling Using Long-Read Sequencing Technologies.
    Bayega A; Wang YC; Oikonomopoulos S; Djambazian H; Fahiminiya S; Ragoussis J
    Methods Mol Biol; 2018; 1783():121-147. PubMed ID: 29767360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome profiling of mouse samples using nanopore sequencing of cDNA and RNA molecules.
    Sessegolo C; Cruaud C; Da Silva C; Cologne A; Dubarry M; Derrien T; Lacroix V; Aury JM
    Sci Rep; 2019 Oct; 9(1):14908. PubMed ID: 31624302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of co-transcriptional splicing from RNA-Seq data.
    Herzel L; Neugebauer KM
    Methods; 2015 Sep; 85():36-43. PubMed ID: 25929182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-read sequencing of nascent RNA reveals coupling among RNA processing events.
    Herzel L; Straube K; Neugebauer KM
    Genome Res; 2018 Jul; 28(7):1008-1019. PubMed ID: 29903723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Mammalian Native Elongating Transcript sequencing (mNET-seq) high-throughput data.
    Prudêncio P; Rebelo K; Grosso AR; Martinho RG; Carmo-Fonseca M
    Methods; 2020 Jun; 178():89-95. PubMed ID: 31493517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular Fractionation and Isolation of Chromatin-Associated RNA.
    Conrad T; Ørom UA
    Methods Mol Biol; 2017; 1468():1-9. PubMed ID: 27662865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FLEP-seq: simultaneous detection of RNA polymerase II position, splicing status, polyadenylation site and poly(A) tail length at genome-wide scale by single-molecule nascent RNA sequencing.
    Long Y; Jia J; Mo W; Jin X; Zhai J
    Nat Protoc; 2021 Sep; 16(9):4355-4381. PubMed ID: 34331052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Splicing Regulation by Third-Generation Sequencing.
    Allemand E; Ango F
    Methods Mol Biol; 2022; 2537():81-95. PubMed ID: 35895260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Use of Nanopore Sequencing to Analyze the Chloroplast Transcriptome Part I: Library Preparation.
    Skiada S; Launay-Avon A; Liehrmann A; Delannoy E; Castandet B
    Methods Mol Biol; 2024; 2776():243-257. PubMed ID: 38502509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies.
    Reddy ASN; Huang J; Syed NH; Ben-Hur A; Dong S; Gu L
    Biochem Soc Trans; 2020 Dec; 48(6):2399-2414. PubMed ID: 33196096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution transcriptome analysis with long-read RNA sequencing.
    Cho H; Davis J; Li X; Smith KS; Battle A; Montgomery SB
    PLoS One; 2014; 9(9):e108095. PubMed ID: 25251678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Cellular RNA Sequencing (HiCAR-Seq): Cost-Effective, High-Throughput 3' mRNA-Seq Method Enabling Individual Sample Quality Control.
    Veeranagouda Y; Zachayus JL; Guillemot JC; Venier O; Didier M
    Curr Protoc Mol Biol; 2020 Sep; 132(1):e123. PubMed ID: 32735043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CapTrap-seq: a platform-agnostic and quantitative approach for high-fidelity full-length RNA sequencing.
    Carbonell-Sala S; Perteghella T; Lagarde J; Nishiyori H; Palumbo E; Arnan C; Takahashi H; Carninci P; Uszczynska-Ratajczak B; Guigó R
    Nat Commun; 2024 Jun; 15(1):5278. PubMed ID: 38937428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcript Isoform-Specific Estimation of Poly(A) Tail Length by Nanopore Sequencing of Native RNA.
    Niazi AM; Krause M; Valen E
    Methods Mol Biol; 2021; 2284():543-567. PubMed ID: 33835463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(A) capture full length cDNA sequencing improves the accuracy and detection ability of transcript quantification and alternative splicing events.
    Ura H; Togi S; Niida Y
    Sci Rep; 2022 Jun; 12(1):10599. PubMed ID: 35732903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing.
    Wuarin J; Schibler U
    Mol Cell Biol; 1994 Nov; 14(11):7219-25. PubMed ID: 7523861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.