BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 33086041)

  • 1. Data-Driven Polymer Model for Mechanistic Exploration of Diploid Genome Organization.
    Qi Y; Reyes A; Johnstone SE; Aryee MJ; Bernstein BE; Zhang B
    Biophys J; 2020 Nov; 119(9):1905-1916. PubMed ID: 33086041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization.
    Tjong H; Li W; Kalhor R; Dai C; Hao S; Gong K; Zhou Y; Li H; Zhou XJ; Le Gros MA; Larabell CA; Chen L; Alber F
    Proc Natl Acad Sci U S A; 2016 Mar; 113(12):E1663-72. PubMed ID: 26951677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compartmentalization with nuclear landmarks yields random, yet precise, genome organization.
    Kamat K; Lao Z; Qi Y; Wang Y; Ma J; Zhang B
    Biophys J; 2023 Apr; 122(7):1376-1389. PubMed ID: 36871158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring chromosome radial organization from Hi-C data.
    Das P; Shen T; McCord RP
    BMC Bioinformatics; 2020 Nov; 21(1):511. PubMed ID: 33167851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biology and polymer physics underlying large-scale chromosome organization.
    Sazer S; Schiessel H
    Traffic; 2018 Feb; 19(2):87-104. PubMed ID: 29105235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast.
    Tjong H; Gong K; Chen L; Alber F
    Genome Res; 2012 Jul; 22(7):1295-305. PubMed ID: 22619363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamic three-dimensional organization of the diploid yeast genome.
    Kim S; Liachko I; Brickner DG; Cook K; Noble WS; Brickner JH; Shendure J; Dunham MJ
    Elife; 2017 May; 6():. PubMed ID: 28537556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physics-Based Polymer Models to Probe Chromosome Structure in Single Molecules.
    Conte M; Chiariello AM; Bianco S; Esposito A; Abraham A; Nicodemi M
    Methods Mol Biol; 2023; 2655():57-66. PubMed ID: 37212988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization.
    Di Stefano M; Paulsen J; Lien TG; Hovig E; Micheletti C
    Sci Rep; 2016 Oct; 6():35985. PubMed ID: 27786255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pairing and anti-pairing: a balancing act in the diploid genome.
    Joyce EF; Erceg J; Wu CT
    Curr Opin Genet Dev; 2016 Apr; 37():119-128. PubMed ID: 27065367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HiCHap: a package to correct and analyze the diploid Hi-C data.
    Luo H; Li X; Fu H; Peng C
    BMC Genomics; 2020 Oct; 21(1):746. PubMed ID: 33109075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capturing Three-Dimensional Genome Organization in Individual Cells by Single-Cell Hi-C.
    Nagano T; Wingett SW; Fraser P
    Methods Mol Biol; 2017; 1654():79-97. PubMed ID: 28986784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ASHIC: hierarchical Bayesian modeling of diploid chromatin contacts and structures.
    Ye T; Ma W
    Nucleic Acids Res; 2020 Dec; 48(21):e123. PubMed ID: 33074315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells.
    Boyle S; Gilchrist S; Bridger JM; Mahy NL; Ellis JA; Bickmore WA
    Hum Mol Genet; 2001 Feb; 10(3):211-9. PubMed ID: 11159939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-random distribution of extensive chromosome rearrangements in Brassica napus depends on genome organization.
    Nicolas SD; Monod H; Eber F; Chèvre AM; Jenczewski E
    Plant J; 2012 May; 70(4):691-703. PubMed ID: 22268419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A predictive computational model of the dynamic 3D interphase yeast nucleus.
    Wong H; Marie-Nelly H; Herbert S; Carrivain P; Blanc H; Koszul R; Fabre E; Zimmer C
    Curr Biol; 2012 Oct; 22(20):1881-90. PubMed ID: 22940469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome.
    Thévenin A; Ein-Dor L; Ozery-Flato M; Shamir R
    Nucleic Acids Res; 2014 Sep; 42(15):9854-61. PubMed ID: 25056310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Producing genome structure populations with the dynamic and automated PGS software.
    Hua N; Tjong H; Shin H; Gong K; Zhou XJ; Alber F
    Nat Protoc; 2018 May; 13(5):915-926. PubMed ID: 29622804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.