BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 33086062)

  • 21. Expression pattern of Kmt2d in murine craniofacial tissues.
    Dong C; Umar M; Bartoletti G; Gahankari A; Fidelak L; He F
    Gene Expr Patterns; 2019 Dec; 34():119060. PubMed ID: 31228576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. KMT2D maintains neoplastic cell proliferation and global histone H3 lysine 4 monomethylation.
    Guo C; Chen LH; Huang Y; Chang CC; Wang P; Pirozzi CJ; Qin X; Bao X; Greer PK; McLendon RE; Yan H; Keir ST; Bigner DD; He Y
    Oncotarget; 2013 Nov; 4(11):2144-53. PubMed ID: 24240169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic mutational status of genes regulating epigenetics: Role of the histone methyltransferase KMT2D in triple negative breast tumors.
    Morcillo-Garcia S; Noblejas-Lopez MDM; Nieto-Jimenez C; Perez-Peña J; Nuncia-Cantarero M; Győrffy B; Amir E; Pandiella A; Galan-Moya EM; Ocana A
    PLoS One; 2019; 14(4):e0209134. PubMed ID: 30990809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ASH1L Links Histone H3 Lysine 36 Dimethylation to MLL Leukemia.
    Zhu L; Li Q; Wong SH; Huang M; Klein BJ; Shen J; Ikenouye L; Onishi M; Schneidawind D; Buechele C; Hansen L; Duque-Afonso J; Zhu F; Martin GM; Gozani O; Majeti R; Kutateladze TG; Cleary ML
    Cancer Discov; 2016 Jul; 6(7):770-83. PubMed ID: 27154821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The low-complexity domains of the KMT2D protein regulate histone monomethylation transcription to facilitate pancreatic cancer progression.
    Li W; Wu L; Jia H; Lin Z; Zhong R; Li Y; Jiang C; Liu S; Zhou X; Zhang E
    Cell Mol Biol Lett; 2021 Nov; 26(1):45. PubMed ID: 34758724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High expression of SMYD3 indicates poor survival outcome and promotes tumour progression through an IGF-1R/AKT/E2F-1 positive feedback loop in bladder cancer.
    Wang G; Huang Y; Yang F; Tian X; Wang K; Liu L; Fan Y; Li X; Li L; Shi B; Hao Y; Xia C; Nie Q; Xin Y; Shi Z; Ma L; Xu D; Liu C
    Aging (Albany NY); 2020 Feb; 12(3):2030-2048. PubMed ID: 32007952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. KDM5 inhibition offers a novel therapeutic strategy for the treatment of KMT2D mutant lymphomas.
    Heward J; Konali L; D'Avola A; Close K; Yeomans A; Philpott M; Dunford J; Rahim T; Al Seraihi AF; Wang J; Korfi K; Araf S; Iqbal S; Bewicke-Copley F; Kumar E; Barisic D; Calaminici M; Clear A; Gribben J; Johnson P; Neve R; Cutillas P; Okosun J; Oppermann U; Melnick A; Packham G; Fitzgibbon J
    Blood; 2021 Aug; 138(5):370-381. PubMed ID: 33786580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Histone methyltransferase KMT2D sustains prostate carcinogenesis and metastasis via epigenetically activating LIFR and KLF4.
    Lv S; Ji L; Chen B; Liu S; Lei C; Liu X; Qi X; Wang Y; Lai-Han Leung E; Wang H; Zhang L; Yu X; Liu Z; Wei Q; Lu L
    Oncogene; 2018 Mar; 37(10):1354-1368. PubMed ID: 29269867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Loss of KMT2D induces prostate cancer ROS-mediated DNA damage by suppressing the enhancer activity and DNA binding of antioxidant transcription factor FOXO3.
    Lv S; Wen H; Shan X; Li J; Wu Y; Yu X; Huang W; Wei Q
    Epigenetics; 2019 Dec; 14(12):1194-1208. PubMed ID: 31232159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation.
    Ang SY; Uebersohn A; Spencer CI; Huang Y; Lee JE; Ge K; Bruneau BG
    Development; 2016 Mar; 143(5):810-21. PubMed ID: 26932671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the role of mutations in the KMT2D histone lysine methyltransferase in bladder cancer.
    Ding B; Yan L; Zhang Y; Wang Z; Zhang Y; Xia D; Ye Z; Xu H
    FEBS Open Bio; 2019 Apr; 9(4):693-706. PubMed ID: 30984543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-GEMM Pooled Mutagenic Screening Identifies KMT2D as a Major Modulator of Immune Checkpoint Blockade.
    Wang G; Chow RD; Zhu L; Bai Z; Ye L; Zhang F; Renauer PA; Dong MB; Dai X; Zhang X; Du Y; Cheng Y; Niu L; Chu Z; Kim K; Liao C; Clark P; Errami Y; Chen S
    Cancer Discov; 2020 Dec; 10(12):1912-1933. PubMed ID: 32887696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes.
    Oswald F; Rodriguez P; Giaimo BD; Antonello ZA; Mira L; Mittler G; Thiel VN; Collins KJ; Tabaja N; Cizelsky W; Rothe M; Kühl SJ; Kühl M; Ferrante F; Hein K; Kovall RA; Dominguez M; Borggrefe T
    Nucleic Acids Res; 2016 Jun; 44(10):4703-20. PubMed ID: 26912830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DBC1 is a key positive regulator of enhancer epigenomic writers KMT2D and p300.
    Kim HJ; Moon SJ; Hong S; Won HH; Kim JH
    Nucleic Acids Res; 2022 Aug; 50(14):7873-7888. PubMed ID: 35801925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. KMT2A promotes melanoma cell growth by targeting hTERT signaling pathway.
    Zhang C; Song C; Liu T; Tang R; Chen M; Gao F; Xiao B; Qin G; Shi F; Li W; Li Y; Fu X; Shi D; Xiao X; Kang L; Huang W; Wu X; Tang B; Deng W
    Cell Death Dis; 2017 Jul; 8(7):e2940. PubMed ID: 28726783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic Location of PRMT6-Dependent H3R2 Methylation Is Linked to the Transcriptional Outcome of Associated Genes.
    Bouchard C; Sahu P; Meixner M; Nötzold RR; Rust MB; Kremmer E; Feederle R; Hart-Smith G; Finkernagel F; Bartkuhn M; Savai Pullamsetti S; Nist A; Stiewe T; Philipsen S; Bauer UM
    Cell Rep; 2018 Sep; 24(12):3339-3352. PubMed ID: 30232013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA Hypermethylation Encroachment at CpG Island Borders in Cancer Is Predisposed by H3K4 Monomethylation Patterns.
    Skvortsova K; Masle-Farquhar E; Luu PL; Song JZ; Qu W; Zotenko E; Gould CM; Du Q; Peters TJ; Colino-Sanguino Y; Pidsley R; Nair SS; Khoury A; Smith GC; Miosge LA; Reed JH; Kench JG; Rubin MA; Horvath L; Bogdanovic O; Lim SM; Polo JM; Goodnow CC; Stirzaker C; Clark SJ
    Cancer Cell; 2019 Feb; 35(2):297-314.e8. PubMed ID: 30753827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatin loading of E2F-MLL complex by cancer-associated coregulator ANCCA via reading a specific histone mark.
    Revenko AS; Kalashnikova EV; Gemo AT; Zou JX; Chen HW
    Mol Cell Biol; 2010 Nov; 30(22):5260-72. PubMed ID: 20855524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The cancer COMPASS: navigating the functions of MLL complexes in cancer.
    Ford DJ; Dingwall AK
    Cancer Genet; 2015 May; 208(5):178-91. PubMed ID: 25794446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Set1 and MLL1/2 Target Distinct Sets of Functionally Different Genomic Loci In Vivo.
    Duncan EM; Chitsazan AD; Seidel CW; Sánchez Alvarado A
    Cell Rep; 2015 Dec; 13(12):2741-55. PubMed ID: 26711341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.