These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33086181)

  • 1. Reductive transformation of birnessite and the mobility of co-associated antimony.
    Karimian N; Johnston SG; Burton ED
    J Hazard Mater; 2021 Feb; 404(Pt B):124227. PubMed ID: 33086181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimonate Controls Manganese(II)-Induced Transformation of Birnessite at a Circumneutral pH.
    Karimian N; Hockmann K; Planer-Friedrich B; Johnston SG; Burton ED
    Environ Sci Technol; 2021 Jul; 55(14):9854-9863. PubMed ID: 34228928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of pH on the reductive transformation of birnessite by aqueous Mn(II).
    Lefkowitz JP; Rouff AA; Elzinga EJ
    Environ Sci Technol; 2013 Sep; 47(18):10364-71. PubMed ID: 23875781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced removal of antimony by acid birnessite with doped iron ions: Companied by the structural transformation.
    Lu H; Zhang W; Tao L; Liu F; Zhang J
    Chemosphere; 2019 Jul; 226():834-840. PubMed ID: 30974376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Humic acid impacts antimony partitioning and speciation during iron(II)-induced ferrihydrite transformation.
    Karimian N; Burton ED; Johnston SG; Hockmann K; Choppala G
    Sci Total Environ; 2019 Sep; 683():399-410. PubMed ID: 31141743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductive transformation of birnessite by aqueous Mn(II).
    Elzinga EJ
    Environ Sci Technol; 2011 Aug; 45(15):6366-72. PubMed ID: 21675764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimony oxidation and sorption behavior on birnessites with different properties (δ-MnO
    Sun Q; Cui PX; Liu C; Peng SM; Alves ME; Zhou DM; Shi ZQ; Wang YJ
    Environ Pollut; 2019 Mar; 246():990-998. PubMed ID: 31159148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimony and Arsenic Behavior during Fe(II)-Induced Transformation of Jarosite.
    Karimian N; Johnston SG; Burton ED
    Environ Sci Technol; 2017 Apr; 51(8):4259-4268. PubMed ID: 28347133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemical Formation and Transformation of Birnessite: Effects of Cations on Micromorphology and Crystal Structure.
    Zhang T; Liu L; Tan W; Suib SL; Qiu G; Liu F
    Environ Sci Technol; 2018 Jun; 52(12):6864-6871. PubMed ID: 29792324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation and incorporation of adsorbed antimonite during iron(II)-catalyzed recrystallization of ferrihydrite.
    Yin X; Zhang G; Su R; Zeng X; Yan Z; Zhang D; Ma X; Lei L; Lin J; Wang S; Jia Y
    Sci Total Environ; 2021 Jul; 778():146424. PubMed ID: 34030383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced transformation of antimony trioxide by Mn(II) oxidation and their co-transformed mechanism.
    Lv Y; Zhang C; Nan C; Fan Z; Huang S
    J Environ Sci (China); 2023 Jul; 129():69-78. PubMed ID: 36804243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimony and arsenic partitioning during Fe
    Karimian N; Johnston SG; Burton ED
    Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Transformation of Birnessite by Fulvic Acid under Anoxic Conditions.
    Wang Q; Yang P; Zhu M
    Environ Sci Technol; 2018 Feb; 52(4):1844-1853. PubMed ID: 29356523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide.
    Liu R; Xu W; He Z; Lan H; Liu H; Qu J; Prasai T
    Chemosphere; 2015 Nov; 138():616-24. PubMed ID: 26218341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The antimony sorption and transport mechanisms in removal experiment by Mn-coated biochar.
    Jia X; Zhou J; Liu J; Liu P; Yu L; Wen B; Feng Y
    Sci Total Environ; 2020 Jul; 724():138158. PubMed ID: 32247137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductive transformation of birnessite by low-molecular-weight organic acids.
    Ritschel T; Totsche KU
    Chemosphere; 2023 Jun; 325():138414. PubMed ID: 36925012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimony(V) behavior during the Fe(II)-induced transformation of Sb(V)-bearing natural multicomponent secondary iron mineral under acidic conditions.
    Lin W; Peng L; Li H; Xiao T; Wang J; Wang N; Zhang X; Zhang H
    Sci Total Environ; 2024 Feb; 912():169592. PubMed ID: 38154637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of Pb(II) at the Mn(III,IV) (oxyhydr)oxide--water interface.
    Matocha CJ; Elzinga EJ; Sparks DL
    Environ Sci Technol; 2001 Jul; 35(14):2967-72. PubMed ID: 11478250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.