These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 33086183)
1. Efficient iron recovery from iron tailings using advanced suspension reduction technology: A study of reaction kinetics, phase transformation, and structure evolution. Yuan S; Zhang Q; Yin H; Li Y J Hazard Mater; 2021 Feb; 404(Pt B):124067. PubMed ID: 33086183 [TBL] [Abstract][Full Text] [Related]
2. Biomass waste as a clean reductant for iron recovery of iron tailings by magnetization roasting. Deng J; Ning XA; Shen J; Ou W; Chen J; Qiu G; Wang Y; He Y J Environ Manage; 2022 Sep; 317():115435. PubMed ID: 35751253 [TBL] [Abstract][Full Text] [Related]
3. Recovery of iron from iron tailings by suspension magnetization roasting with biomass-derived pyrolytic gas. Qiu G; Ning X; Shen J; Wang Y; Zhang D; Deng J Waste Manag; 2023 Feb; 156():255-263. PubMed ID: 36508909 [TBL] [Abstract][Full Text] [Related]
4. Innovative methodology for comprehensive utilization of iron ore tailings: part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. Li C; Sun H; Bai J; Li L J Hazard Mater; 2010 Feb; 174(1-3):71-7. PubMed ID: 19782467 [TBL] [Abstract][Full Text] [Related]
5. Separation of Iron and Rare Earths from Low-Intensity Magnetic Separation (LIMS) Tailings through Magnetization Roasting-Magnetic Separation. Hou S; Wang W; Zhang B; Li W; Guo C; Li Q; Li E ChemistryOpen; 2024 Feb; 13(2):e202300059. PubMed ID: 37902712 [TBL] [Abstract][Full Text] [Related]
6. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation. Zhang Y; Li H; Yu X J Hazard Mater; 2012 Apr; 213-214():167-74. PubMed ID: 22333161 [TBL] [Abstract][Full Text] [Related]
7. Utilization of iron tailings to prepare high-surface area mesoporous silica materials. Lu C; Yang H; Wang J; Tan Q; Fu L Sci Total Environ; 2020 Sep; 736():139483. PubMed ID: 32473455 [TBL] [Abstract][Full Text] [Related]
8. Study on Magnetization Roasting Kinetics of High-Iron and Low-Silicon Red Mud. Xie L; Hao J; Hu C; Zhang H Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763456 [TBL] [Abstract][Full Text] [Related]
9. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud. Yuan S; Liu X; Gao P; Han Y J Hazard Mater; 2020 Jul; 394():122579. PubMed ID: 32283382 [TBL] [Abstract][Full Text] [Related]
10. Geochemical and mineralogical constraints in iron ore tailings limit soil formation for direct phytostabilization. Wu S; Liu Y; Southam G; Robertson L; Chiu TH; Cross AT; Dixon KW; Stevens JC; Zhong H; Chan TS; Lu YJ; Huang L Sci Total Environ; 2019 Feb; 651(Pt 1):192-202. PubMed ID: 30227289 [TBL] [Abstract][Full Text] [Related]
11. Iron ore tailings valorization through separate characterization and upgradation of different tailings streams of an Iranian iron ore processing plant. Ghasemi S; Behnamfard A; Arjmand R Environ Sci Pollut Res Int; 2023 Nov; 30(54):115448-115460. PubMed ID: 37884724 [TBL] [Abstract][Full Text] [Related]
12. The enrichment and transformation mechanism of Pb and Cu in suspension magnetization roasting and magnetic separation from iron tailings. Qiu G; Ning X; Zhang D; Deng J; Wang Y Waste Manag; 2024 Jul; 184():82-91. PubMed ID: 38797126 [TBL] [Abstract][Full Text] [Related]
13. Recovery iron from cyanide tailings by anaerobic roasting-persulfate leaching: effect of roasting temperature. Dong P; Song Y; Wu L; Bao J; Yin N; Zhu R; Li Y Environ Sci Pollut Res Int; 2023 Apr; 30(17):50537-50548. PubMed ID: 36795215 [TBL] [Abstract][Full Text] [Related]
14. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation. Yang H; Jing L; Zhang B J Hazard Mater; 2011 Jan; 185(2-3):1405-11. PubMed ID: 21071144 [TBL] [Abstract][Full Text] [Related]
15. Microbial reductive transformation of iron-rich tailings in a column reactor and its environmental implications to arsenic reactive transport in mining tailings. Ouyang B; Lu X; Li J; Liu H Sci Total Environ; 2019 Jun; 670():1008-1018. PubMed ID: 31018416 [TBL] [Abstract][Full Text] [Related]
16. Ferric minerals and organic matter change arsenic speciation in copper mine tailings. Wang P; Liu Y; Menzies NW; Wehr JB; de Jonge MD; Howard DL; Kopittke PM; Huang L Environ Pollut; 2016 Nov; 218():835-843. PubMed ID: 27524252 [TBL] [Abstract][Full Text] [Related]
17. High-Efficiency Iron Extraction from Low-Grade Siderite via a Conveyor Bed Magnetization Roasting-Magnetic Separation Process: Kinetics Research and Applications. Jiu S; Zhao B; Yang C; Chen Y; Cheng F Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143572 [TBL] [Abstract][Full Text] [Related]
18. Mineralogical and microscopic evaluation of coarse taconite tailings from Minnesota taconite operations. Zanko LM; Niles HB; Oreskovich JA Regul Toxicol Pharmacol; 2008 Oct; 52(1 Suppl):S51-65. PubMed ID: 18166256 [TBL] [Abstract][Full Text] [Related]
19. Synthesis process of forsterite refractory by iron ore tailings. Li J; Wang Q; Liu J; Li P J Environ Sci (China); 2009; 21 Suppl 1():S92-5. PubMed ID: 25084443 [TBL] [Abstract][Full Text] [Related]
20. Magnetite recovery from copper tailings increases arsenic distribution in solution phase and uptake in native grass. Liu Y; Huang L J Environ Manage; 2017 Jan; 186(Pt 2):175-182. PubMed ID: 27210238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]