These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 33086649)

  • 1. Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data.
    Takahashi S; Asada K; Takasawa K; Shimoyama R; Sakai A; Bolatkan A; Shinkai N; Kobayashi K; Komatsu M; Kaneko S; Sese J; Hamamoto R
    Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33086649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of histopathological images and multi-dimensional omics analyses predicts molecular features and prognosis in high-grade serous ovarian cancer.
    Zeng H; Chen L; Zhang M; Luo Y; Ma X
    Gynecol Oncol; 2021 Oct; 163(1):171-180. PubMed ID: 34275655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma.
    Li W; Huang Q; Peng Y; Pan S; Hu M; Wang P; He Y
    J Cancer Res Clin Oncol; 2023 Nov; 149(17):15923-15938. PubMed ID: 37673824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.
    Malik V; Kalakoti Y; Sundar D
    BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological integration of RPPA proteomic data with multi-omics data for survival prediction in breast cancer via pathway activity inference.
    Kim TR; Jeong HH; Sohn KA
    BMC Med Genomics; 2019 Jul; 12(Suppl 5):94. PubMed ID: 31296204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histopathological Images and Multi-Omics Integration Predict Molecular Characteristics and Survival in Lung Adenocarcinoma.
    Chen L; Zeng H; Xiang Y; Huang Y; Luo Y; Ma X
    Front Cell Dev Biol; 2021; 9():720110. PubMed ID: 34708036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data.
    Poirion OB; Jing Z; Chaudhary K; Huang S; Garmire LX
    Genome Med; 2021 Jul; 13(1):112. PubMed ID: 34261540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction.
    Chai H; Zhou X; Zhang Z; Rao J; Zhao H; Yang Y
    Comput Biol Med; 2021 Jul; 134():104481. PubMed ID: 33989895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis.
    Tong L; Mitchel J; Chatlin K; Wang MD
    BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Group Lasso Regularized Deep Learning for Cancer Prognosis from Multi-Omics and Clinical Features.
    Xie G; Dong C; Kong Y; Zhong JF; Li M; Wang K
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30901858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering Prognosis-Related Genes and Pathways by Multi-Omics Analysis in Lung Cancer.
    Asada K; Kobayashi K; Joutard S; Tubaki M; Takahashi S; Takasawa K; Komatsu M; Kaneko S; Sese J; Hamamoto R
    Biomolecules; 2020 Mar; 10(4):. PubMed ID: 32235589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiotranscriptomics of non-small cell lung carcinoma for assessing high-level clinical outcomes using a machine learning-derived multi-modal signature.
    Trivizakis E; Koutroumpa NM; Souglakos J; Karantanas A; Zervakis M; Marias K
    Biomed Eng Online; 2023 Dec; 22(1):125. PubMed ID: 38102586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating gene expression from DNA methylation and copy number variation: A deep learning regression model for multi-omics integration.
    Seal DB; Das V; Goswami S; De RK
    Genomics; 2020 Jul; 112(4):2833-2841. PubMed ID: 32234433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer.
    Chaudhary K; Poirion OB; Lu L; Garmire LX
    Clin Cancer Res; 2018 Mar; 24(6):1248-1259. PubMed ID: 28982688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A denoised multi-omics integration framework for cancer subtype classification and survival prediction.
    Pang J; Liang B; Ding R; Yan Q; Chen R; Xu J
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37594302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ProgCAE: a deep learning-based method that integrates multi-omics data to predict cancer subtypes.
    Liu Q; Song K
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37232375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. moSCminer: a cell subtype classification framework based on the attention neural network integrating the single-cell multi-omics dataset on the cloud.
    Choi JM; Park C; Chae H
    PeerJ; 2024; 12():e17006. PubMed ID: 38426141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer.
    Tong L; Wu H; Wang MD
    Methods; 2021 May; 189():74-85. PubMed ID: 32763377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated multi-omics analysis of ovarian cancer using variational autoencoders.
    Hira MT; Razzaque MA; Angione C; Scrivens J; Sawan S; Sarker M
    Sci Rep; 2021 Mar; 11(1):6265. PubMed ID: 33737557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-attention enables deep learning on limited omics-imaging-clinical data of 130 lung cancer patients.
    Verma S; Magazzù G; Eftekhari N; Lou T; Gilhespy A; Occhipinti A; Angione C
    Cell Rep Methods; 2024 Jul; 4(7):100817. PubMed ID: 38981473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.