These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33086664)

  • 1. Materials Selection and Construction Development for Ensuring the Availability and Durability of the Molten Hydroxide Electrolyte Direct Carbon Fuel Cell (MH-MCFC).
    Kacprzak A; Włodarczyk R
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33086664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges in developing direct carbon fuel cells.
    Jiang C; Ma J; Corre G; Jain SL; Irvine JTS
    Chem Soc Rev; 2017 May; 46(10):2889-2912. PubMed ID: 28422193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of stainless steel electrodes after electrochemical analysis in sea water condition.
    Kovendhan M; Kang H; Jeong S; Youn JS; Oh I; Park YK; Jeon KJ
    Environ Res; 2019 Jun; 173():549-555. PubMed ID: 31004909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.
    Belousov VV
    Acc Chem Res; 2017 Feb; 50(2):273-280. PubMed ID: 28186402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A High-Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C.
    Wu W; Zhang Y; Ding D; He T
    Adv Mater; 2018 Jan; 30(4):. PubMed ID: 29218736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrosion-Resistant Steel-MgO Composites as Refractory Materials for Molten Aluminum Alloys.
    Malczyk P; Zienert T; Kerber F; Weigelt C; Sauke SO; Semrau H; G Aneziris C
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33114029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Honeycombed Porous, Size-Matching Architecture for High-Performance Hybrid Direct Carbon Fuel Cell Anode.
    Ma M; Yang X; Ren R; Xu C; Qiao J; Sun W; Sun K; Wang Z
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30411-30419. PubMed ID: 32543180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductive Carbon Materials from the Hydrothermal Carbonization of Vineyard Residues for the Application in Electrochemical Double-Layer Capacitors (EDLCs) and Direct Carbon Fuel Cells (DCFCs).
    Hoffmann V; Jung D; Zimmermann J; Rodriguez Correa C; Elleuch A; Halouani K; Kruse A
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31130674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro evaluation of the electrochemical behaviour of stainless steel and Ni-Ti orthodontic archwires at different temperatures.
    Pakshir M; Bagheri T; Kazemi MR
    Eur J Orthod; 2013 Aug; 35(4):407-13. PubMed ID: 21771804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemistry of galvanic couples between carbon and common metallic biomaterials in the presence of crevices.
    Silva RA; Barbosa MA; Jenkins GM; Sutherland I
    Biomaterials; 1990 Jul; 11(5):336-40. PubMed ID: 2400800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of coal as a fuel for the direct carbon fuel cell.
    Li X; Zhu Z; De Marco R; Bradley J; Dicks A
    J Phys Chem A; 2010 Mar; 114(11):3855-62. PubMed ID: 19810741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires.
    Kim H; Johnson JW
    Angle Orthod; 1999 Feb; 69(1):39-44. PubMed ID: 10022183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro corrosion of Ti-6Al-4V and type 316L stainless steel when galvanically coupled with carbon.
    Thompson NG; Buchanan RA; Lemons JE
    J Biomed Mater Res; 1979 Jan; 13(1):35-44. PubMed ID: 429383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic investigations on materials corrosion in some industrial and environmental processes.
    Shi P; Engström A; Sundman B
    J Environ Sci (China); 2011 Jun; 23 Suppl():S1-7. PubMed ID: 25084566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the Properties of Vertical Carbon Nanotube Films Grown on Stainless Steel Bipolar Plates.
    Lu C; Shi F; Jin J; Peng X
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30889839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fretting corrosion resistance and fretting corrosion product cytocompatibility of ferritic stainless steel.
    Xulin S; Ito A; Tateishi T; Hoshino A
    J Biomed Mater Res; 1997 Jan; 34(1):9-14. PubMed ID: 8978647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.
    Yue X; Arenillas A; Irvine JT
    Faraday Discuss; 2016 Aug; 190():269-89. PubMed ID: 27272986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molten carbonate fuel cells fed with biogas: combating H(2)S.
    Ciccoli R; Cigolotti V; Lo Presti R; Massi E; McPhail SJ; Monteleone G; Moreno A; Naticchioni V; Paoletti C; Simonetti E; Zaza F
    Waste Manag; 2010 Jun; 30(6):1018-24. PubMed ID: 20211554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution.
    Assis SL; Rogero SO; Antunes RA; Padilha AF; Costa I
    J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):109-16. PubMed ID: 15660438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.