BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33086760)

  • 1. Regulatory Impact of the C-Terminal Tail on Charge Transfer Pathways in
    Richter M; Fingerhut BP
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33086760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavin reduction activates Drosophila cryptochrome.
    Vaidya AT; Top D; Manahan CC; Tokuda JM; Zhang S; Pollack L; Young MW; Crane BR
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20455-60. PubMed ID: 24297896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin chromophore.
    Ozturk N; Selby CP; Zhong D; Sancar A
    J Biol Chem; 2014 Feb; 289(8):4634-42. PubMed ID: 24379403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.
    Ganguly A; Manahan CC; Top D; Yee EF; Lin C; Young MW; Thiel W; Crane BR
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10073-8. PubMed ID: 27551082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction.
    Lin C; Top D; Manahan CC; Young MW; Crane BR
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3822-3827. PubMed ID: 29581265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct mechanisms of
    Baik LS; Au DD; Nave C; Foden AJ; Enrriquez-Villalva WK; Holmes TC
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23339-23344. PubMed ID: 31659046
    [No Abstract]   [Full Text] [Related]  

  • 7. Photoactivation of
    Berntsson O; Rodriguez R; Henry L; Panman MR; Hughes AJ; Einholz C; Weber S; Ihalainen JA; Henning R; Kosheleva I; Schleicher E; Westenhoff S
    Sci Adv; 2019 Jul; 5(7):eaaw1531. PubMed ID: 31328161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function.
    Czarna A; Berndt A; Singh HR; Grudziecki A; Ladurner AG; Timinszky G; Kramer A; Wolf E
    Cell; 2013 Jun; 153(6):1394-405. PubMed ID: 23746849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drosophila CRY Entrains Clocks in Body Tissues to Light and Maintains Passive Membrane Properties in a Non-clock Body Tissue Independent of Light.
    Agrawal P; Houl JH; Gunawardhana KL; Liu T; Zhou J; Zoran MJ; Hardin PE
    Curr Biol; 2017 Aug; 27(16):2431-2441.e3. PubMed ID: 28781048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
    Ivanchenko M; Stanewsky R; Giebultowicz JM
    J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster.
    Fedele G; Edwards MD; Bhutani S; Hares JM; Murbach M; Green EW; Dissel S; Hastings MH; Rosato E; Kyriacou CP
    PLoS Genet; 2014 Dec; 10(12):e1004804. PubMed ID: 25473952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning flavin environment to detect and control light-induced conformational switching in Drosophila cryptochrome.
    Chandrasekaran S; Schneps CM; Dunleavy R; Lin C; DeOliveira CC; Ganguly A; Crane BR
    Commun Biol; 2021 Feb; 4(1):249. PubMed ID: 33637846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exquisite light sensitivity of Drosophila melanogaster cryptochrome.
    Vinayak P; Coupar J; Hughes SE; Fozdar P; Kilby J; Garren E; Yoshii T; Hirsh J
    PLoS Genet; 2013; 9(7):e1003615. PubMed ID: 23874218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryptochrome-Timeless structure reveals circadian clock timing mechanisms.
    Lin C; Feng S; DeOliveira CC; Crane BR
    Nature; 2023 May; 617(7959):194-199. PubMed ID: 37100907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster.
    Kutta RJ; Archipowa N; Scrutton NS
    Phys Chem Chem Phys; 2018 Nov; 20(45):28767-28776. PubMed ID: 30417904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox potential: differential roles in dCRY and mCRY1 functions.
    Froy O; Chang DC; Reppert SM
    Curr Biol; 2002 Jan; 12(2):147-52. PubMed ID: 11818067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction.
    Li X; Wang Q; Yu X; Liu H; Yang H; Zhao C; Liu X; Tan C; Klejnot J; Zhong D; Lin C
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20844-9. PubMed ID: 22139370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states.
    Paulus B; Bajzath C; Melin F; Heidinger L; Kromm V; Herkersdorf C; Benz U; Mann L; Stehle P; Hellwig P; Weber S; Schleicher E
    FEBS J; 2015 Aug; 282(16):3175-89. PubMed ID: 25879256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The tail of cryptochromes: an intrinsically disordered cog within the mammalian circadian clock.
    Parico GCG; Partch CL
    Cell Commun Signal; 2020 Nov; 18(1):182. PubMed ID: 33198762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Correlates of Circadian Clocks in Fruit Fly Drosophila melanogaster Populations Exhibiting early and late Emergence Chronotypes.
    Nikhil KL; Abhilash L; Sharma VK
    J Biol Rhythms; 2016 Apr; 31(2):125-41. PubMed ID: 26833082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.