These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33086760)

  • 41. Residues at a Single Site Differentiate Animal Cryptochromes from Cyclobutane Pyrimidine Dimer Photolyases by Affecting the Proteins' Preferences for Reduced FAD.
    Xu L; Wen B; Wang Y; Tian C; Wu M; Zhu G
    Chembiochem; 2017 Jun; 18(12):1129-1137. PubMed ID: 28393477
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct experimental observation of blue-light-induced conformational change and intermolecular interactions of cryptochrome.
    Li P; Cheng H; Kumar V; Lupala CS; Li X; Shi Y; Ma C; Joo K; Lee J; Liu H; Tan YW
    Commun Biol; 2022 Oct; 5(1):1103. PubMed ID: 36257983
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neural Network Interactions Modulate CRY-Dependent Photoresponses in
    Lamba P; Foley LE; Emery P
    J Neurosci; 2018 Jul; 38(27):6161-6171. PubMed ID: 29875268
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light.
    Yoshii T; Funada Y; Ibuki-Ishibashi T; Matsumoto A; Tanimura T; Tomioka K
    J Insect Physiol; 2004 Jun; 50(6):479-88. PubMed ID: 15183277
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phase-shifting the fruit fly clock without cryptochrome.
    Kistenpfennig C; Hirsh J; Yoshii T; Helfrich-Förster C
    J Biol Rhythms; 2012 Apr; 27(2):117-25. PubMed ID: 22476772
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1.
    Gao J; Wang X; Zhang M; Bian M; Deng W; Zuo Z; Yang Z; Zhong D; Lin C
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):9135-40. PubMed ID: 26106155
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy.
    Alex A; Li A; Zeng X; Tate RE; McKee ML; Capen DE; Zhang Z; Tanzi RE; Zhou C
    PLoS One; 2015; 10(9):e0137236. PubMed ID: 26348211
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Searching for a photocycle of the cryptochrome photoreceptors.
    Liu B; Liu H; Zhong D; Lin C
    Curr Opin Plant Biol; 2010 Oct; 13(5):578-86. PubMed ID: 20943427
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new role for cryptochrome in a Drosophila circadian oscillator.
    Krishnan B; Levine JD; Lynch MK; Dowse HB; Funes P; Hall JC; Hardin PE; Dryer SE
    Nature; 2001 May; 411(6835):313-7. PubMed ID: 11357134
    [TBL] [Abstract][Full Text] [Related]  

  • 50. No FAD, No CRY: Redox and Circadian Rhythms.
    Pritchett D; Reddy AB
    Trends Biochem Sci; 2017 Jul; 42(7):497-499. PubMed ID: 28592378
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Light entrainment of retinal biorhythms: cryptochrome 2 as candidate photoreceptor in mammals.
    Vanderstraeten J; Gailly P; Malkemper EP
    Cell Mol Life Sci; 2020 Mar; 77(5):875-884. PubMed ID: 31982933
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states.
    Bouly JP; Schleicher E; Dionisio-Sese M; Vandenbussche F; Van Der Straeten D; Bakrim N; Meier S; Batschauer A; Galland P; Bittl R; Ahmad M
    J Biol Chem; 2007 Mar; 282(13):9383-9391. PubMed ID: 17237227
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome.
    Berndt A; Kottke T; Breitkreuz H; Dvorsky R; Hennig S; Alexander M; Wolf E
    J Biol Chem; 2007 Apr; 282(17):13011-21. PubMed ID: 17298948
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of combining a cryptochrome mutation with other visual-system variants on entrainment of locomotor and adult-emergence rhythms in Drosophila.
    Mealey-Ferrara ML; Montalvo AG; Hall JC
    J Neurogenet; 2003; 17(2-3):171-221. PubMed ID: 14668199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photic signaling by cryptochrome in the Drosophila circadian system.
    Lin FJ; Song W; Meyer-Bernstein E; Naidoo N; Sehgal A
    Mol Cell Biol; 2001 Nov; 21(21):7287-94. PubMed ID: 11585911
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock.
    Somers DE; Devlin PF; Kay SA
    Science; 1998 Nov; 282(5393):1488-90. PubMed ID: 9822379
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity.
    Zhang Y; Markert MJ; Groves SC; Hardin PE; Merlin C
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7516-E7525. PubMed ID: 28831003
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Closely Related Fruit Fly Species Living at Different Latitudes Diverge in Their Circadian Clock Anatomy and Rhythmic Behavior.
    Beauchamp M; Bertolini E; Deppisch P; Steubing J; Menegazzi P; Helfrich-Förster C
    J Biol Rhythms; 2018 Dec; 33(6):602-613. PubMed ID: 30203704
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fly cryptochrome and the visual system.
    Mazzotta G; Rossi A; Leonardi E; Mason M; Bertolucci C; Caccin L; Spolaore B; Martin AJ; Schlichting M; Grebler R; Helfrich-Förster C; Mammi S; Costa R; Tosatto SC
    Proc Natl Acad Sci U S A; 2013 Apr; 110(15):6163-8. PubMed ID: 23536301
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Non-canonical Phototransduction Mediates Synchronization of the Drosophila melanogaster Circadian Clock and Retinal Light Responses.
    Ogueta M; Hardie RC; Stanewsky R
    Curr Biol; 2018 Jun; 28(11):1725-1735.e3. PubMed ID: 29779871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.