These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33086784)

  • 81. High-Indexed PtNi Alloy Skin Spiraled on Pd Nanowires for Highly Efficient Oxygen Reduction Reaction Catalysis.
    Zhao Y; Tao L; Dang W; Wang L; Xia M; Wang B; Liu M; Gao F; Zhang J; Zhao Y
    Small; 2019 Apr; 15(17):e1900288. PubMed ID: 30920760
    [TBL] [Abstract][Full Text] [Related]  

  • 82. One-pot facile synthesis of reusable tremella-like M1@M2@M1(OH)2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) three layers core-shell nanostructures as highly efficient catalysts.
    Liu Y; Fang Z; Kuai L; Geng B
    Nanoscale; 2014 Aug; 6(16):9791-7. PubMed ID: 25008373
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Revealing the Role of Electrocatalyst Crystal Structure on Oxygen Evolution Reaction with Nickel as an Example.
    Wang C; Wang Y; Yang H; Zhang Y; Zhao H; Wang Q
    Small; 2018 Oct; 14(40):e1802895. PubMed ID: 30260570
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Au-Pd alloy and core-shell nanostructures: one-pot coreduction preparation, formation mechanism, and electrochemical properties.
    Kuai L; Yu X; Wang S; Sang Y; Geng B
    Langmuir; 2012 May; 28(18):7168-73. PubMed ID: 22501031
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Selective control of fcc and hcp crystal structures in Au-Ru solid-solution alloy nanoparticles.
    Zhang Q; Kusada K; Wu D; Yamamoto T; Toriyama T; Matsumura S; Kawaguchi S; Kubota Y; Kitagawa H
    Nat Commun; 2018 Feb; 9(1):510. PubMed ID: 29410399
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Synthesis of tetrahexahedral Au-Pd core-shell nanocrystals and reduction of graphene oxide for the electrochemical detection of epinephrine.
    Dong W; Ren Y; Bai Z; Jiao J; Chen Y; Han B; Chen Q
    J Colloid Interface Sci; 2018 Feb; 512():812-818. PubMed ID: 29121608
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Synergistic Effects of Crystal Phase and Strain for N
    Xie T; Zhou J; Cai L; Hu W; Huang B; Yuan D
    ACS Omega; 2022 Feb; 7(5):4492-4500. PubMed ID: 35155941
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The unusual effect of AgNO3 on the growth of Au nanostructures and their catalytic performance.
    Li X; Yang Y; Zhou G; Han S; Wang W; Zhang L; Chen W; Zou C; Huang S
    Nanoscale; 2013 Jun; 5(11):4976-85. PubMed ID: 23636467
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Highly Enhanced Gas Sensing Performance Using a 1T/2H Heterophase MoS
    Zong B; Li Q; Chen X; Liu C; Li L; Ruan J; Mao S
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50610-50618. PubMed ID: 33136368
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Electrochemical Reduction of CO
    Qin B; Li Y; Fu H; Wang H; Chen S; Liu Z; Peng F
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20530-20539. PubMed ID: 29847915
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation.
    Wang C; Wang H; Huang T; Xue X; Qiu F; Jiang Q
    Sci Rep; 2015 May; 5():10213. PubMed ID: 25998415
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Ultrathin Amorphous/Crystalline Heterophase Rh and Rh Alloy Nanosheets as Tandem Catalysts for Direct Indole Synthesis.
    Ge J; Yin P; Chen Y; Cheng H; Liu J; Chen B; Tan C; Yin PF; Zheng HX; Li QQ; Chen S; Xu W; Wang X; Wu G; Sun R; Shan XH; Hong X; Zhang H
    Adv Mater; 2021 Mar; 33(9):e2006711. PubMed ID: 33491810
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Formation of heteroepitaxy in different shapes of Au-CdSe metal-semiconductor hybrid nanostructures.
    Haldar KK; Pradhan N; Patra A
    Small; 2013 Oct; 9(20):3424-32. PubMed ID: 23666644
    [TBL] [Abstract][Full Text] [Related]  

  • 94. One-Pot Fabrication of Mesoporous Core-Shell Au@PtNi Ternary Metallic Nanoparticles and Their Enhanced Efficiency for Oxygen Reduction Reaction.
    Shi Q; Zhu C; Fu S; Du D; Lin Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4739-44. PubMed ID: 26820165
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Facet-Selective Deposition of Metal (M=Au, Pt, Pd) Nanoparticles on Co
    Liu Q; Cao M; Chen L; Yuan X; Zhong Q; Wu L; Yang D; Hu H; Xu Y; Zhang Q
    Chempluschem; 2018 May; 83(5):334-338. PubMed ID: 31957354
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Ru Nanoframes with an fcc Structure and Enhanced Catalytic Properties.
    Ye H; Wang Q; Catalano M; Lu N; Vermeylen J; Kim MJ; Liu Y; Sun Y; Xia X
    Nano Lett; 2016 Apr; 16(4):2812-7. PubMed ID: 26999499
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Interface effect of magnetic properties in Ni nanoparticles with a hcp core and fcc shell structure.
    Choo S; Lee K; Jo Y; Yoon SM; Choi JY; Kim JY; Park JH; Lee KJ; Lee JH; Jung MH
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6126-30. PubMed ID: 22121671
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Sensitive amperometric immunosensor with improved electrocatalytic Au@Pd urchin-shaped nanostructures for human epididymis specific protein 4 antigen detection.
    Yan Q; Cao L; Dong H; Tan Z; Liu Q; Zhang W; Zhao P; Li Y; Liu Y; Dong Y
    Anal Chim Acta; 2019 Sep; 1069():117-125. PubMed ID: 31084737
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Strain-induced restructuring of the surface in core@shell nanoalloys.
    Panizon E; Ferrando R
    Nanoscale; 2016 Sep; 8(35):15911-9. PubMed ID: 27545724
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Revealing Surface Restraint-Induced Hexagonal Pd Nanocrystals via
    You R; Wu Z; Yu J; Wang F; Chen S; Han ZK; Yuan W; Yang H; Wang Y
    Nano Lett; 2022 Jun; 22(11):4333-4339. PubMed ID: 35584407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.