These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33086814)

  • 21. Fibronectin fiber creep under constant force loading.
    Bradshaw MJ; Hoffmann GA; Wong JY; Smith ML
    Acta Biomater; 2019 Apr; 88():78-85. PubMed ID: 30780000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tensile Creep Behavior of Quasi-Unidirectional E-Glass Fabric Reinforced Polypropylene Composite.
    Zhai Z; Jiang B; Drummer D
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The microstructure and creep behavior of cold rolled udimet 188 sheet.
    Boehlert CJ; Longanbach SC
    Microsc Microanal; 2011 Jun; 17(3):350-61. PubMed ID: 21205424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superplastic Creep of Metal Nanowires from Rate-Dependent Plasticity Transition.
    Tao W; Cao P; Park HS
    ACS Nano; 2018 May; 12(5):4984-4992. PubMed ID: 29708727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An activated energy approach for accelerated testing of the deformation of UHMWPE in artificial joints.
    Galetz MC; Glatzel U
    J Mech Behav Biomed Mater; 2010 May; 3(4):331-8. PubMed ID: 20346901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The tensile creep characteristics of dental amalgam. I. Stress dependence.
    Cruickshanks-Boyd DW; Roswati N
    J Biomed Mater Res; 1981 Sep; 15(5):769-80. PubMed ID: 12659141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction.
    Qin Q; Yin S; Cheng G; Li X; Chang TH; Richter G; Zhu Y; Gao H
    Nat Commun; 2015 Jan; 6():5983. PubMed ID: 25585295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of reorganization of a nanocrystalline grain boundary network during biaxial creep deformation of nanocrystalline Ni using molecular dynamics simulation.
    Pal S; Meraj M
    J Mol Model; 2019 Aug; 25(9):282. PubMed ID: 31468178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling defects and plasticity in MgSiO
    Goryaeva AM; Carrez P; Cordier P
    Phys Chem Miner; 2017; 44(7):521-533. PubMed ID: 32025082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-temperature dislocation plasticity in the single-crystal superalloy LEK94.
    Kostka A; Mälzer G; Eggeler G
    J Microsc; 2006 Sep; 223(Pt 3):295-7. PubMed ID: 17059555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous tomography and diffraction analysis of creep damage.
    Pyzalla A; Camin B; Buslaps T; Di Michiel M; Kaminski H; Kottar A; Pernack A; Reimers W
    Science; 2005 Apr; 308(5718):92-5. PubMed ID: 15802600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Creep rupture of fiber bundles: A molecular dynamics investigation.
    Linga G; Ballone P; Hansen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022405. PubMed ID: 26382414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Creep of Polycrystalline Magnesium Aluminate Spinel Studied by an SPS Apparatus.
    Ratzker B; Sokol M; Kalabukhov S; Frage N
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystalline liquid and rubber-like behavior in Cu nanowires.
    Yue Y; Chen N; Li X; Zhang S; Zhang Z; Chen M; Han X
    Nano Lett; 2013 Aug; 13(8):3812-6. PubMed ID: 23898785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical properties of ceria nanorods and nanochains; the effect of dislocations, grain-boundaries and oriented attachment.
    Sayle TX; Inkson BJ; Karakoti A; Kumar A; Molinari M; Möbus G; Parker SC; Seal S; Sayle DC
    Nanoscale; 2011 Apr; 3(4):1823-37. PubMed ID: 21409243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Power-law creep from discrete dislocation dynamics.
    Keralavarma SM; Cagin T; Arsenlis A; Benzerga AA
    Phys Rev Lett; 2012 Dec; 109(26):265504. PubMed ID: 23368581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation on mechanical behaviors of Cu-Ni binary alloy nanopillars: a molecular dynamics study.
    Rahman MM; Islam MS; Anjum N
    J Mol Model; 2020 Jul; 26(8):214. PubMed ID: 32705399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural changes and chain radius of gyration in cold-drawn polyethylene after annealing: small- and wide-angle X-ray scattering and small-angle neutron scattering studies.
    Men Y; Rieger J; Lindner P; Enderle HF; Lilge D; Kristen MO; Mihan S; Jiang S
    J Phys Chem B; 2005 Sep; 109(35):16650-7. PubMed ID: 16853118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determining Deformation Transition in Polyethylene under Tensile Loading.
    Tan N; Jar PB
    Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31466395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dislocation-driven surface dynamics on solids.
    Kodambaka S; Khare SV; Swiech W; Ohmori K; Petrov I; Greene JE
    Nature; 2004 May; 429(6987):49-52. PubMed ID: 15129275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.