These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33086826)

  • 1. MDBenchmark: A toolkit to optimize the performance of molecular dynamics simulations.
    Gecht M; Siggel M; Linke M; Hummer G; Köfinger J
    J Chem Phys; 2020 Oct; 153(14):144105. PubMed ID: 33086826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations.
    Kutzner C; Páll S; Fechner M; Esztermann A; de Groot BL; Grubmüller H
    J Comput Chem; 2015 Oct; 36(26):1990-2008. PubMed ID: 26238484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. More bang for your buck: Improved use of GPU nodes for GROMACS 2018.
    Kutzner C; Páll S; Fechner M; Esztermann A; de Groot BL; Grubmüller H
    J Comput Chem; 2019 Oct; 40(27):2418-2431. PubMed ID: 31260119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS.
    Páll S; Zhmurov A; Bauer P; Abraham M; Lundborg M; Gray A; Hess B; Lindahl E
    J Chem Phys; 2020 Oct; 153(13):134110. PubMed ID: 33032406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Analysis of CP2K Code for Ab Initio Molecular Dynamics on CPUs and GPUs.
    Yokelson D; Tkachenko NV; Robey R; Li YW; Dub PA
    J Chem Inf Model; 2022 May; 62(10):2378-2386. PubMed ID: 35451847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting Molecular Dynamics on a CPU/GPU system: Water Kernel and SHAKE Parallelization.
    Ruymgaart AP; Elber R
    J Chem Theory Comput; 2012 Nov; 8(11):4624-4636. PubMed ID: 23264758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous CPU+GPU-Enabled Simulations for DFTB Molecular Dynamics of Large Chemical and Biological Systems.
    Allec SI; Sun Y; Sun J; Chang CA; Wong BM
    J Chem Theory Comput; 2019 May; 15(5):2807-2815. PubMed ID: 30916958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Kepler Workflow Tool for Reproducible AMBER GPU Molecular Dynamics.
    Purawat S; Ieong PU; Malmstrom RD; Chan GJ; Yeung AK; Walker RC; Altintas I; Amaro RE
    Biophys J; 2017 Jun; 112(12):2469-2474. PubMed ID: 28636905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling bioinformatics applications on HPC.
    Mikailov M; Luo FJ; Barkley S; Valleru L; Whitney S; Liu Z; Thakkar S; Tong W; Petrick N
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):501. PubMed ID: 29297287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field Programmable Gate Arrays for Enhancing the Speed and Energy Efficiency of Quantum Dynamics Simulations.
    Rodrı Guez-Borbón JM; Kalantar A; Yamijala SSRKC; Oviedo MB; Najjar W; Wong BM
    J Chem Theory Comput; 2020 Apr; 16(4):2085-2098. PubMed ID: 32216276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MiMiC: A high-performance framework for multiscale molecular dynamics simulations.
    Antalík A; Levy A; Kvedaravičiūtė S; Johnson SK; Carrasco-Busturia D; Raghavan B; Mouvet F; Acocella A; Das S; Gavini V; Mandelli D; Ippoliti E; Meloni S; Carloni P; Rothlisberger U; Olsen JMH
    J Chem Phys; 2024 Jul; 161(2):. PubMed ID: 38990116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GronOR: Massively parallel and GPU-accelerated non-orthogonal configuration interaction for large molecular systems.
    Straatsma TP; Broer R; Faraji S; Havenith RWA; Suarez LEA; Kathir RK; Wibowo M; de Graaf C
    J Chem Phys; 2020 Feb; 152(6):064111. PubMed ID: 32061226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics.
    Zheng M; Li X; Guo L
    J Mol Graph Model; 2013 Apr; 41():1-11. PubMed ID: 23454611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A CPU/MIC Collaborated Parallel Framework for GROMACS on Tianhe-2 Supercomputer.
    Peng S; Cui Y; Yang S; Su W; Zhang X; Zhang T; Liu W; Zhao X
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):425-433. PubMed ID: 28641267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Midpoint cell method for hybrid (MPI+OpenMP) parallelization of molecular dynamics simulations.
    Jung J; Mori T; Sugita Y
    J Comput Chem; 2014 May; 35(14):1064-72. PubMed ID: 24659253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphics Processing Unit Acceleration and Parallelization of GENESIS for Large-Scale Molecular Dynamics Simulations.
    Jung J; Naurse A; Kobayashi C; Sugita Y
    J Chem Theory Comput; 2016 Oct; 12(10):4947-4958. PubMed ID: 27631425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting Free-Energy Perturbation Calculations with GPU-Accelerated NAMD.
    Chen H; Maia JDC; Radak BK; Hardy DJ; Cai W; Chipot C; Tajkhorshid E
    J Chem Inf Model; 2020 Nov; 60(11):5301-5307. PubMed ID: 32805108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CHAPERON
    Yekeen AA; Durojaye OA; Idris MO; Muritala HF; Arise RO
    Comput Struct Biotechnol J; 2023; 21():4849-4858. PubMed ID: 37854635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid particle-field molecular dynamics simulations: parallelization and benchmarks.
    Zhao Y; De Nicola A; Kawakatsu T; Milano G
    J Comput Chem; 2012 Mar; 33(8):868-80. PubMed ID: 22278759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic benchmarking of large molecular dynamics simulations employing GROMACS on massive multiprocessing facilities.
    Gruber CC; Pleiss J
    J Comput Chem; 2011 Mar; 32(4):600-6. PubMed ID: 20812321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.