These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 33086838)

  • 41. Harnessing Deep Learning for Optimization of Lennard-Jones Parameters for the Polarizable Classical Drude Oscillator Force Field.
    Chatterjee P; Sengul MY; Kumar A; MacKerell AD
    J Chem Theory Comput; 2022 Apr; 18(4):2388-2407. PubMed ID: 35362975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Higher Accuracy Achieved in the Simulations of Protein Structure Refinement, Protein Folding, and Intrinsically Disordered Proteins Using Polarizable Force Fields.
    Wang A; Zhang Z; Li G
    J Phys Chem Lett; 2018 Dec; 9(24):7110-7116. PubMed ID: 30514082
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polarizable empirical force field for the primary and secondary alcohol series based on the classical Drude model.
    Anisimov VM; Vorobyov IV; Roux B; Mackerell AD
    J Chem Theory Comput; 2007; 3(6):1927-1946. PubMed ID: 18802495
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polarizable empirical force field for acyclic polyalcohols based on the classical Drude oscillator.
    He X; Lopes PE; Mackerell AD
    Biopolymers; 2013 Oct; 99(10):724-38. PubMed ID: 23703219
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of a Polarizable Force Field for Molecular Dynamics Simulations of Lithium-Ion Battery Electrolytes: Sulfone-Based Solvents and Lithium Salts.
    Starovoytov ON
    J Phys Chem B; 2021 Oct; 125(40):11242-11255. PubMed ID: 34586817
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polarizable empirical force field for hexopyranose monosaccharides based on the classical Drude oscillator.
    Patel DS; He X; MacKerell AD
    J Phys Chem B; 2015 Jan; 119(3):637-52. PubMed ID: 24564643
    [TBL] [Abstract][Full Text] [Related]  

  • 47. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.
    Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP
    J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A valence bond model for aqueous Cu(II) and Zn(II) ions in the AMOEBA polarizable force field.
    Xiang JY; Ponder JW
    J Comput Chem; 2013 Apr; 34(9):739-49. PubMed ID: 23212979
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Force field development phase II: Relaxation of physics-based criteria… or inclusion of more rigorous physics into the representation of molecular energetics.
    Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):205-264. PubMed ID: 30506159
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrostatic polarization is crucial in reproducing Cu(I) interaction energies and hydration.
    Ponomarev SY; Click TH; Kaminski GA
    J Phys Chem B; 2011 Aug; 115(33):10079-85. PubMed ID: 21761909
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Accurate Quantum-Mechanically Derived Force-Fields through a Fragment-Based Approach: Balancing Specificity and Transferability in the Prediction of Self-Assembly in Soft Matter.
    Greff da Silveira L; Livotto PR; Padula D; Vilhena JG; Prampolini G
    J Chem Theory Comput; 2022 Nov; 18(11):6905-6919. PubMed ID: 36260420
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polarizable empirical force field for sulfur-containing compounds based on the classical Drude oscillator model.
    Zhu X; MacKerell AD
    J Comput Chem; 2010 Sep; 31(12):2330-41. PubMed ID: 20575015
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inclusion of High-Field Target Data in AMOEBA's Calibration Improves Predictions of Protein-Ion Interactions.
    Delgado JA; Wineman-Fisher V; Pandit S; Varma S
    J Chem Inf Model; 2022 Oct; 62(19):4713-4726. PubMed ID: 36173398
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ion solvation thermodynamics from simulation with a polarizable force field.
    Grossfield A; Ren P; Ponder JW
    J Am Chem Soc; 2003 Dec; 125(50):15671-82. PubMed ID: 14664617
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Balancing Group I Monatomic Ion-Polar Compound Interactions for Condensed Phase Simulation in the Polarizable Drude Force Field.
    Nan Y; MacKerell AD
    J Chem Theory Comput; 2024 Apr; 20(8):3242-3257. PubMed ID: 38588064
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transferability and additivity of dihedral parameters in polarizable and nonpolarizable empirical force fields.
    Zgarbová M; Rosnik AM; Luque FJ; Curutchet C; Jurečka P
    J Comput Chem; 2015 Sep; 36(25):1874-84. PubMed ID: 26224547
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methyl-aldopentofuranosides.
    Jana M; MacKerell AD
    J Phys Chem B; 2015 Jun; 119(25):7846-59. PubMed ID: 26018564
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Trends for isolated amino acids and dipeptides: Conformation, divalent ion binding, and remarkable similarity of binding to calcium and lead.
    Ropo M; Blum V; Baldauf C
    Sci Rep; 2016 Nov; 6():35772. PubMed ID: 27808109
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Benchmarking the Drude Polarizable Force Field Using the r(GACC) Tetranucleotide.
    Winkler L; Cheatham TE
    J Chem Inf Model; 2023 Apr; 63(8):2505-2511. PubMed ID: 36996447
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermodynamics calculation of protein-ligand interactions by QM/MM polarizable charge parameters.
    Wang J; Shao Q; Cossins BP; Shi J; Chen K; Zhu W
    J Biomol Struct Dyn; 2016; 34(1):163-76. PubMed ID: 25761118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.