These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33086880)

  • 1. Characterization of the biofilm grown on 304L stainless steel in urban wastewaters: extracellular polymeric substances (EPS) and bacterial consortia.
    Ziadi I; El-Bassi L; Bousselmi L; Akrout H
    Biofouling; 2020 Sep; 36(8):977-989. PubMed ID: 33086880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbiologically influenced corrosion mechanism of 304L stainless steel in treated urban wastewater and protective effect of silane-TiO
    Ziadi I; Alves MM; Taryba M; El-Bassi L; Hassairi H; Bousselmi L; Montemor MF; Akrout H
    Bioelectrochemistry; 2020 Apr; 132():107413. PubMed ID: 31816578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial Corrosion in Orthodontics.
    Gopalakrishnan U; Felicita S; Ronald B; Appavoo E; Patil S
    J Contemp Dent Pract; 2022 Jun; 23(6):569-571. PubMed ID: 36259293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction between extracellular polymeric substances and corrosion products in pipes shaped different bacterial communities and the effects of micropollutants.
    Yin H; Wang H; Wang M; Shi B
    Water Res; 2023 Dec; 247():120822. PubMed ID: 37950951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dual-electrochemical cell to study the biocorrosion of stainless steel.
    Lopes FA; Perrin S; Féron D
    Water Sci Technol; 2007; 55(8-9):499-504. PubMed ID: 17547022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion.
    Dong ZH; Liu T; Liu HF
    Biofouling; 2011 May; 27(5):487-95. PubMed ID: 21604218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular electron transfer of Bacillus cereus biofilm and its effect on the corrosion behaviour of 316L stainless steel.
    Li S; Li L; Qu Q; Kang Y; Zhu B; Yu D; Huang R
    Colloids Surf B Biointerfaces; 2019 Jan; 173():139-147. PubMed ID: 30278362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic electrochemical corrosion of mild steel in the presence of extracellular polymeric substances produced by a culture enriched in sulfate-reducing bacteria.
    Chan KY; Xu LC; Fang HH
    Environ Sci Technol; 2002 Apr; 36(8):1720-7. PubMed ID: 11993869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism.
    Lopes FA; Morin P; Oliveira R; Melo LF
    J Appl Microbiol; 2006 Nov; 101(5):1087-95. PubMed ID: 17040232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of mixed species biofilm on corrosion of X65 steel in seawater environment.
    Lv M; Du M; Li Z
    Bioelectrochemistry; 2022 Feb; 143():107951. PubMed ID: 34601262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions.
    Li Q; Wang J; Xing X; Hu W
    Bioelectrochemistry; 2018 Aug; 122():40-50. PubMed ID: 29547738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.
    Jin J; Guan Y
    Bioresour Technol; 2014 Oct; 169():387-394. PubMed ID: 25069092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater.
    Jin J; Wu G; Zhang Z; Guan Y
    Bioresour Technol; 2014 Aug; 165():162-5. PubMed ID: 24618284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris.
    Li H; Xu D; Li Y; Feng H; Liu Z; Li X; Gu T; Yang K
    PLoS One; 2015; 10(8):e0136183. PubMed ID: 26308855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous autoinducer-2 inhibits biofilm development of Desulfovibrio sp. Huiquan2017.
    Li E; Wu J; Zhang D
    World J Microbiol Biotechnol; 2021 Jun; 37(7):124. PubMed ID: 34170406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of corrosion inhibitor on adhesion of sulfate-reducing bacteria to steel and their production of exopolymer complex].
    Purishch LM; Asaulenko LH; Koptieva ZhP; Kozlova IP
    Mikrobiol Z; 2004; 66(4):78-85. PubMed ID: 15515905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of Pseudomonas putida biofilm and associated extracellular polymeric substances from stainless steel by alkali cleaning.
    Antoniou K; Frank JF
    J Food Prot; 2005 Feb; 68(2):277-81. PubMed ID: 15726969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Quorum Sensing on the Ability of
    Scarascia G; Lehmann R; Machuca LL; Morris C; Cheng KY; Kaksonen A; Hong PY
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31628147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ.
    Jayaraman A; Hallock PJ; Carson RM; Lee CC; Mansfeld FB; Wood TK
    Appl Microbiol Biotechnol; 1999 Aug; 52(2):267-75. PubMed ID: 10499267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metagenomics diversity analysis of sulfate-reducing bacteria and their impact on biocorrosion and mitigation approach using an organometallic inhibitor.
    Parthipan P; Cheng L; Dhandapani P; Rajasekar A
    Sci Total Environ; 2023 Jan; 856(Pt 2):159203. PubMed ID: 36202367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.