These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 33087118)

  • 1. Predicting miRNA-disease associations using a hybrid feature representation in the heterogeneous network.
    Liu M; Yang J; Wang J; Deng L
    BMC Med Genomics; 2020 Oct; 13(Suppl 10):153. PubMed ID: 33087118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information.
    Ji BY; You ZH; Chen ZH; Wong L; Yi HC
    BMC Bioinformatics; 2020 Sep; 21(1):401. PubMed ID: 32912137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved random forest-based computational model for predicting novel miRNA-disease associations.
    Yao D; Zhan X; Kwoh CK
    BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SGLMDA: A Subgraph Learning-Based Method for miRNA-Disease Association Prediction.
    Ji C; Yu N; Wang Y; Ni J; Zheng C
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1191-1201. PubMed ID: 38446654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational method using heterogeneous graph convolutional network model combined with reinforcement layer for MiRNA-disease association prediction.
    Huang D; An J; Zhang L; Liu B
    BMC Bioinformatics; 2022 Jul; 23(1):299. PubMed ID: 35879658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNRLMF-MDA:Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases.
    Yan C; Wang J; Ni P; Lan W; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):233-243. PubMed ID: 29990253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Computational Model for Predicting microRNA-Disease Associations Based on Heterogeneous Graph Convolutional Networks.
    Li C; Liu H; Hu Q; Que J; Yao J
    Cells; 2019 Aug; 8(9):. PubMed ID: 31455028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring microRNA-disease association by hybrid recommendation algorithm and unbalanced bi-random walk on heterogeneous network.
    Yu DL; Ma YL; Yu ZG
    Sci Rep; 2019 Feb; 9(1):2474. PubMed ID: 30792474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting miRNA-disease associations based on graph attention network with multi-source information.
    Li G; Fang T; Zhang Y; Liang C; Xiao Q; Luo J
    BMC Bioinformatics; 2022 Jun; 23(1):244. PubMed ID: 35729531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction.
    Chen X; Huang L; Xie D; Zhao Q
    Cell Death Dis; 2018 Jan; 9(1):3. PubMed ID: 29305594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting potential miRNA-disease associations by combining gradient boosting decision tree with logistic regression.
    Zhou S; Wang S; Wu Q; Azim R; Li W
    Comput Biol Chem; 2020 Apr; 85():107200. PubMed ID: 32058946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting miRNA-disease associations based on PPMI and attention network.
    Xie X; Wang Y; He K; Sheng N
    BMC Bioinformatics; 2023 Mar; 24(1):113. PubMed ID: 36959547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of potential small molecule-miRNA associations based on heterogeneous network representation learning.
    Li J; Lin H; Wang Y; Li Z; Wu B
    Front Genet; 2022; 13():1079053. PubMed ID: 36531225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNRLCNN: A CNN Framework for Identifying MiRNA-Disease Associations Using Latent Feature Matrix Extraction with Positive Samples.
    Zhong J; Zhou W; Kang J; Fang Z; Xie M; Xiao Q; Peng W
    Interdiscip Sci; 2022 Jun; 14(2):607-622. PubMed ID: 35428965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SNMDA: A novel method for predicting microRNA-disease associations based on sparse neighbourhood.
    Qu Y; Zhang H; Liang C; Ding P; Luo J
    J Cell Mol Med; 2018 Oct; 22(10):5109-5120. PubMed ID: 30030889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KATZNCP: a miRNA-disease association prediction model integrating KATZ algorithm and network consistency projection.
    Chen M; Deng Y; Li Z; Ye Y; He Z
    BMC Bioinformatics; 2023 Jun; 24(1):229. PubMed ID: 37268893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global-local aware Heterogeneous Graph Contrastive Learning for multifaceted association prediction in miRNA-gene-disease networks.
    Si Y; Huang Z; Fang Z; Yuan Z; Huang Z; Li Y; Wei Y; Wu F; Yao YF
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39256197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Disease-related microRNAs through Integrating Attributes of microRNA Nodes and Multiple Kinds of Connecting Edges.
    Xuan P; Li L; Zhang T; Zhang Y; Song Y
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31455026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-Network Collaborative Matrix Factorization for predicting small molecule-miRNA associations.
    Wang SH; Wang CC; Huang L; Miao LY; Chen X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.