These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 33087275)
21. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Hegde ML; Hazra TK; Mitra S Cell Res; 2008 Jan; 18(1):27-47. PubMed ID: 18166975 [TBL] [Abstract][Full Text] [Related]
22. Altered DNA base excision repair profile in brain tissue and blood in Alzheimer's disease. Lillenes MS; Rabano A; Støen M; Riaz T; Misaghian D; Møllersen L; Esbensen Y; Günther CC; Selnes P; Stenset VT; Fladby T; Tønjum T Mol Brain; 2016 May; 9(1):61. PubMed ID: 27234294 [TBL] [Abstract][Full Text] [Related]
23. Interaction of Nucleotide Excision Repair Protein XPC-RAD23B with DNA Containing Benzo[a]pyrene-Derived Adduct and Apurinic/Apyrimidinic Site within a Cluster. Starostenko LV; Maltseva EA; Lebedeva NA; Pestryakov PE; Lavrik OI; Rechkunova NI Biochemistry (Mosc); 2016 Mar; 81(3):233-41. PubMed ID: 27262192 [TBL] [Abstract][Full Text] [Related]
24. Interaction of poly(ADP-ribose) polymerase 1 with apurinic/apyrimidinic sites within clustered DNA damage. Kutuzov MM; Ilina ES; Sukhanova MV; Pyshnaya IA; Pyshnyi DV; Lavrik OI; Khodyreva SN Biochemistry (Mosc); 2011 Jan; 76(1):147-56. PubMed ID: 21568846 [TBL] [Abstract][Full Text] [Related]
25. Mechanism and regulation of DNA damage recognition in mammalian nucleotide excision repair. Sugasawa K Enzymes; 2019; 45():99-138. PubMed ID: 31627884 [TBL] [Abstract][Full Text] [Related]
26. Poly(ADP-ribose) Polymerase 1 Modulates Interaction of the Nucleotide Excision Repair Factor XPC-RAD23B with DNA via Poly(ADP-ribosyl)ation. Maltseva EA; Rechkunova NI; Sukhanova MV; Lavrik OI J Biol Chem; 2015 Sep; 290(36):21811-20. PubMed ID: 26170451 [TBL] [Abstract][Full Text] [Related]
27. Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair. Mu H; Geacintov NE; Broyde S; Yeo JE; Schärer OD DNA Repair (Amst); 2018 Nov; 71():33-42. PubMed ID: 30174301 [TBL] [Abstract][Full Text] [Related]
28. Mammalian Base Excision Repair: Functional Partnership between PARP-1 and APE1 in AP-Site Repair. Prasad R; Dyrkheeva N; Williams J; Wilson SH PLoS One; 2015; 10(5):e0124269. PubMed ID: 26020771 [TBL] [Abstract][Full Text] [Related]
29. Mechanism of interaction between human 8-oxoguanine-DNA glycosylase and AP endonuclease. Sidorenko VS; Nevinsky GA; Zharkov DO DNA Repair (Amst); 2007 Mar; 6(3):317-28. PubMed ID: 17126083 [TBL] [Abstract][Full Text] [Related]
30. Slow base excision by human alkyladenine DNA glycosylase limits the rate of formation of AP sites and AP endonuclease 1 does not stimulate base excision. Maher RL; Vallur AC; Feller JA; Bloom LB DNA Repair (Amst); 2007 Jan; 6(1):71-81. PubMed ID: 17018265 [TBL] [Abstract][Full Text] [Related]
31. Functional Role of N-Terminal Extension of Human AP Endonuclease 1 In Coordination of Base Excision DNA Repair via Protein-Protein Interactions. Moor N; Vasil'eva I; Lavrik O Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32354179 [TBL] [Abstract][Full Text] [Related]
32. Functional Roles of PARP2 in Assembling Protein-Protein Complexes Involved in Base Excision DNA Repair. Vasil'eva I; Moor N; Anarbaev R; Kutuzov M; Lavrik O Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925170 [TBL] [Abstract][Full Text] [Related]
33. Major oxidative products of cytosine are substrates for the nucleotide incision repair pathway. Daviet S; Couvé-Privat S; Gros L; Shinozuka K; Ide H; Saparbaev M; Ishchenko AA DNA Repair (Amst); 2007 Jan; 6(1):8-18. PubMed ID: 16978929 [TBL] [Abstract][Full Text] [Related]
34. NEIL2-initiated, APE-independent repair of oxidized bases in DNA: Evidence for a repair complex in human cells. Das A; Wiederhold L; Leppard JB; Kedar P; Prasad R; Wang H; Boldogh I; Karimi-Busheri F; Weinfeld M; Tomkinson AE; Wilson SH; Mitra S; Hazra TK DNA Repair (Amst); 2006 Dec; 5(12):1439-48. PubMed ID: 16982218 [TBL] [Abstract][Full Text] [Related]
35. Single molecule analysis reveals monomeric XPA bends DNA and undergoes episodic linear diffusion during damage search. Beckwitt EC; Jang S; Carnaval Detweiler I; Kuper J; Sauer F; Simon N; Bretzler J; Watkins SC; Carell T; Kisker C; Van Houten B Nat Commun; 2020 Mar; 11(1):1356. PubMed ID: 32170071 [TBL] [Abstract][Full Text] [Related]
36. Spatial organization of nucleotide excision repair proteins after UV-induced DNA damage in the human cell nucleus. Solimando L; Luijsterburg MS; Vecchio L; Vermeulen W; van Driel R; Fakan S J Cell Sci; 2009 Jan; 122(Pt 1):83-91. PubMed ID: 19066286 [TBL] [Abstract][Full Text] [Related]
37. Oxidative DNA damage repair in mammalian cells: a new perspective. Hazra TK; Das A; Das S; Choudhury S; Kow YW; Roy R DNA Repair (Amst); 2007 Apr; 6(4):470-80. PubMed ID: 17116430 [TBL] [Abstract][Full Text] [Related]
38. UV-DDB stimulates the activity of SMUG1 during base excision repair of 5-hydroxymethyl-2'-deoxyuridine moieties. Jang S; Raja SJ; Roginskaya V; Schaich MA; Watkins SC; Van Houten B Nucleic Acids Res; 2023 Jun; 51(10):4881-4898. PubMed ID: 36971122 [TBL] [Abstract][Full Text] [Related]
39. The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. Moser J; Volker M; Kool H; Alekseev S; Vrieling H; Yasui A; van Zeeland AA; Mullenders LH DNA Repair (Amst); 2005 May; 4(5):571-82. PubMed ID: 15811629 [TBL] [Abstract][Full Text] [Related]
40. Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1. Kuznetsova AA; Kuznetsov NA; Ishchenko AA; Saparbaev MK; Fedorova OS Biochim Biophys Acta; 2014 Oct; 1840(10):3042-51. PubMed ID: 25086253 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]