These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1011 related articles for article (PubMed ID: 33087281)
1. Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks. Shibata A; Jeggo PA DNA Repair (Amst); 2020 Sep; 93():102915. PubMed ID: 33087281 [TBL] [Abstract][Full Text] [Related]
2. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. Goodarzi AA; Jeggo P; Lobrich M DNA Repair (Amst); 2010 Dec; 9(12):1273-82. PubMed ID: 21036673 [TBL] [Abstract][Full Text] [Related]
3. DNA DSB repair pathway choice: an orchestrated handover mechanism. Kakarougkas A; Jeggo PA Br J Radiol; 2014 Mar; 87(1035):20130685. PubMed ID: 24363387 [TBL] [Abstract][Full Text] [Related]
4. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks. Murmann-Konda T; Soni A; Stuschke M; Iliakis G Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628 [TBL] [Abstract][Full Text] [Related]
5. Age-associated deficient recruitment of 53BP1 in G1 cells directs DNA double-strand break repair to BRCA1/CtIP-mediated DNA-end resection. Anglada T; Genescà A; Martín M Aging (Albany NY); 2020 Dec; 12(24):24872-24893. PubMed ID: 33361520 [TBL] [Abstract][Full Text] [Related]
6. The complexity of DNA double strand breaks is a critical factor enhancing end-resection. Yajima H; Fujisawa H; Nakajima NI; Hirakawa H; Jeggo PA; Okayasu R; Fujimori A DNA Repair (Amst); 2013 Nov; 12(11):936-46. PubMed ID: 24041488 [TBL] [Abstract][Full Text] [Related]
7. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Chapman JR; Barral P; Vannier JB; Borel V; Steger M; Tomas-Loba A; Sartori AA; Adams IR; Batista FD; Boulton SJ Mol Cell; 2013 Mar; 49(5):858-71. PubMed ID: 23333305 [TBL] [Abstract][Full Text] [Related]
8. ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. Beucher A; Birraux J; Tchouandong L; Barton O; Shibata A; Conrad S; Goodarzi AA; Krempler A; Jeggo PA; Löbrich M EMBO J; 2009 Nov; 28(21):3413-27. PubMed ID: 19779458 [TBL] [Abstract][Full Text] [Related]
9. The efficiency of homologous recombination and non-homologous end joining systems in repairing double-strand breaks during cell cycle progression. Bee L; Fabris S; Cherubini R; Mognato M; Celotti L PLoS One; 2013; 8(7):e69061. PubMed ID: 23874869 [TBL] [Abstract][Full Text] [Related]
11. DNA end resection is needed for the repair of complex lesions in G1-phase human cells. Averbeck NB; Ringel O; Herrlitz M; Jakob B; Durante M; Taucher-Scholz G Cell Cycle; 2014; 13(16):2509-16. PubMed ID: 25486192 [TBL] [Abstract][Full Text] [Related]
12. DSB repair pathway choice is regulated by recruitment of 53BP1 through cell cycle-dependent regulation of Sp1. Swift ML; Beishline K; Flashner S; Azizkhan-Clifford J Cell Rep; 2021 Mar; 34(11):108840. PubMed ID: 33730584 [TBL] [Abstract][Full Text] [Related]
13. Opposing roles for 53BP1 during homologous recombination. Kakarougkas A; Ismail A; Klement K; Goodarzi AA; Conrad S; Freire R; Shibata A; Lobrich M; Jeggo PA Nucleic Acids Res; 2013 Nov; 41(21):9719-31. PubMed ID: 23969417 [TBL] [Abstract][Full Text] [Related]
14. 53BP1 contributes to survival of cells irradiated with X-ray during G1 without Ku70 or Artemis. Iwabuchi K; Hashimoto M; Matsui T; Kurihara T; Shimizu H; Adachi N; Ishiai M; Yamamoto K; Tauchi H; Takata M; Koyama H; Date T Genes Cells; 2006 Aug; 11(8):935-48. PubMed ID: 16866876 [TBL] [Abstract][Full Text] [Related]
15. Disruption of Chromatin Dynamics by Hypotonic Stress Suppresses HR and Shifts DSB Processing to Error-Prone SSA. Krieger LM; Mladenov E; Soni A; Demond M; Stuschke M; Iliakis G Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681628 [TBL] [Abstract][Full Text] [Related]
16. Homologous recombination protects mammalian cells from replication-associated DNA double-strand breaks arising in response to methyl methanesulfonate. Nikolova T; Ensminger M; Löbrich M; Kaina B DNA Repair (Amst); 2010 Oct; 9(10):1050-63. PubMed ID: 20708982 [TBL] [Abstract][Full Text] [Related]
17. ATM-phosphorylated SPOP contributes to 53BP1 exclusion from chromatin during DNA replication. Wang D; Ma J; Botuyan MV; Cui G; Yan Y; Ding D; Zhou Y; Krueger EW; Pei J; Wu X; Wang L; Pei H; McNiven MA; Ye D; Mer G; Huang H Sci Adv; 2021 Jun; 7(25):. PubMed ID: 34144977 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of DNA double strand break repair and chromosome aberration formation. Iliakis G; Wang H; Perrault AR; Boecker W; Rosidi B; Windhofer F; Wu W; Guan J; Terzoudi G; Pantelias G Cytogenet Genome Res; 2004; 104(1-4):14-20. PubMed ID: 15162010 [TBL] [Abstract][Full Text] [Related]
20. Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle. Taleei R; Nikjoo H Mutat Res; 2013 Aug; 756(1-2):206-12. PubMed ID: 23792210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]