These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 33087448)
1. Characterization of the Human Intestinal Drug Transport with Ussing Chamber System Incorporating Freshly Isolated Human Jejunum. Michiba K; Maeda K; Kurimori K; Enomoto T; Shimomura O; Takeuchi T; Nishiyama H; Oda T; Kusuhara H Drug Metab Dispos; 2021 Jan; 49(1):84-93. PubMed ID: 33087448 [TBL] [Abstract][Full Text] [Related]
2. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the "Advanced Dissolution, Absorption, Metabolism (ADAM)" model. Darwich AS; Neuhoff S; Jamei M; Rostami-Hodjegan A Curr Drug Metab; 2010 Nov; 11(9):716-29. PubMed ID: 21189140 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. Sjöberg Å; Lutz M; Tannergren C; Wingolf C; Borde A; Ungell AL Eur J Pharm Sci; 2013 Jan; 48(1-2):166-80. PubMed ID: 23103351 [TBL] [Abstract][Full Text] [Related]
5. The Ussing Chamber Assay to Study Drug Metabolism and Transport in the Human Intestine. Kisser B; Mangelsen E; Wingolf C; Partecke LI; Heidecke CD; Tannergren C; Oswald S; Keiser M Curr Protoc Pharmacol; 2017 Jun; 77():7.17.1-7.17.19. PubMed ID: 28640954 [TBL] [Abstract][Full Text] [Related]
6. Targeting intestinal transporters for optimizing oral drug absorption. Varma MV; Ambler CM; Ullah M; Rotter CJ; Sun H; Litchfield J; Fenner KS; El-Kattan AF Curr Drug Metab; 2010 Nov; 11(9):730-42. PubMed ID: 21189135 [TBL] [Abstract][Full Text] [Related]
7. Human enteroid monolayers as a potential alternative for Ussing chamber and Caco-2 monolayers to study passive permeability and drug efflux. Streekstra EJ; Keuper-Navis M; van den Heuvel JJMW; van den Broek P; Stommel MWJ; Bervoets S; O'Gorman L; Greupink R; Russel FGM; van de Steeg E; de Wildt SN Eur J Pharm Sci; 2024 Oct; 201():106877. PubMed ID: 39154715 [TBL] [Abstract][Full Text] [Related]
8. Frog intestinal sac as an in vitro method for the assessment of intestinal permeability in humans: Application to carrier transported drugs. Franco M; Lopedota A; Trapani A; Cutrignelli A; Meleleo D; Micelli S; Trapani G Int J Pharm; 2008 Mar; 352(1-2):182-8. PubMed ID: 18055143 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of an Ussing Chamber System Equipped with Rat Intestinal Tissues to Predict Intestinal Absorption and Metabolism in Humans. Guan C; Yang Y; Tian D; Jiang Z; Zhang H; Li Y; Yan J; Zhang C; Chen C; Zhang J; Wang J; Wang Y; Du H; Zhou H; Wang T Eur J Drug Metab Pharmacokinet; 2022 Sep; 47(5):639-652. PubMed ID: 35733077 [TBL] [Abstract][Full Text] [Related]
10. Intestinal Permeability and Oral Absorption of Selected Drugs Are Reduced in a Mouse Model of Familial Alzheimer's Disease. Jin L; Pan Y; Tran NLL; Polychronopoulos LN; Warrier A; Brouwer KLR; Nicolazzo JA Mol Pharm; 2020 May; 17(5):1527-1537. PubMed ID: 32212738 [TBL] [Abstract][Full Text] [Related]
11. Application of compartmental modeling to an examination of in vitro intestinal permeability data: assessing the impact of tissue uptake, P-glycoprotein, and CYP3A. Johnson BM; Charman WN; Porter CJ Drug Metab Dispos; 2003 Sep; 31(9):1151-60. PubMed ID: 12920171 [TBL] [Abstract][Full Text] [Related]
12. Pancreatoduodenectomy as a source of human small intestine for Ussing chamber investigations and comparative studies with rat tissue. Haslam IS; O'Reilly DA; Sherlock DJ; Kauser A; Womack C; Coleman T Biopharm Drug Dispos; 2011 May; 32(4):210-21. PubMed ID: 21416475 [TBL] [Abstract][Full Text] [Related]
13. Role of intestinal efflux transporters in the intestinal absorption of methotrexate in rats. Yokooji T; Murakami T; Yumoto R; Nagai J; Takano M J Pharm Pharmacol; 2007 Sep; 59(9):1263-70. PubMed ID: 17883898 [TBL] [Abstract][Full Text] [Related]
14. Human jejunal effective permeability and its correlation with preclinical drug absorption models. Lennernäs H J Pharm Pharmacol; 1997 Jul; 49(7):627-38. PubMed ID: 9255703 [TBL] [Abstract][Full Text] [Related]
15. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine. Dahan A; Sabit H; Amidon GL Drug Metab Dispos; 2009 Oct; 37(10):2028-36. PubMed ID: 19589874 [TBL] [Abstract][Full Text] [Related]
16. Interaction of Drug or Food with Drug Transporters in Intestine and Liver. Nakanishi T; Tamai I Curr Drug Metab; 2015; 16(9):753-64. PubMed ID: 26630906 [TBL] [Abstract][Full Text] [Related]
17. Characterization of jejunal absorption and apical efflux of ropivacaine, lidocaine and bupivacaine in the rat using in situ and in vitro absorption models. Berggren S; Hoogstraate J; Fagerholm U; Lennernäs H Eur J Pharm Sci; 2004 Mar; 21(4):553-60. PubMed ID: 14998587 [TBL] [Abstract][Full Text] [Related]
18. Intestinal drug transporters: an overview. Estudante M; Morais JG; Soveral G; Benet LZ Adv Drug Deliv Rev; 2013 Oct; 65(10):1340-56. PubMed ID: 23041352 [TBL] [Abstract][Full Text] [Related]
19. The Regional-Specific Relative and Absolute Expression of Gut Transporters in Adult Caucasians: A Meta-Analysis. Harwood MD; Zhang M; Pathak SM; Neuhoff S Drug Metab Dispos; 2019 Aug; 47(8):854-864. PubMed ID: 31076413 [TBL] [Abstract][Full Text] [Related]
20. [Modulation on the P-glycoprotein in the jejunum by combined use of Glycyrrhiza inflata and Kansui]. Sun YB; Li GF; Tang ZK; Wu BY Yao Xue Xue Bao; 2010 Apr; 45(4):510-6. PubMed ID: 21355220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]