These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33087702)

  • 1. Brain activity and transcriptional profiling in mice under chronic jet lag.
    Gao Q; Khan S; Zhang L
    Sci Data; 2020 Oct; 7(1):361. PubMed ID: 33087702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian disruption in mice through chronic jet lag-like conditions modulates molecular profiles of cancer in nucleus accumbens and prefrontal cortex.
    Khan S; Yong VW; Xue M
    Carcinogenesis; 2021 Jun; 42(6):864-873. PubMed ID: 33608694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulated Chronic Jet Lag Affects the Structural and Functional Complexity of Hippocampal Neurons in Mice.
    Kumari R; Verma V; Singaravel M
    Neuroscience; 2024 Apr; 543():1-12. PubMed ID: 38354900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic jet lag-like conditions dysregulate molecular profiles of neurological disorders in nucleus accumbens and prefrontal cortex.
    Siddique R; Awan FM; Nabi G; Khan S; Xue M
    Front Neuroinform; 2022; 16():1031448. PubMed ID: 36582489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forced desynchronization of activity rhythms in a model of chronic jet lag in mice.
    Casiraghi LP; Oda GA; Chiesa JJ; Friesen WO; Golombek DA
    J Biol Rhythms; 2012 Feb; 27(1):59-69. PubMed ID: 22306974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-fixed feeding prevents obesity induced by chronic advances of light/dark cycles in mouse models of jet-lag/shift work.
    Oike H; Sakurai M; Ippoushi K; Kobori M
    Biochem Biophys Res Commun; 2015 Sep; 465(3):556-61. PubMed ID: 26297949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian disruption alters mouse lung clock gene expression and lung mechanics.
    Hadden H; Soldin SJ; Massaro D
    J Appl Physiol (1985); 2012 Aug; 113(3):385-92. PubMed ID: 22678966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice.
    Iwamoto A; Kawai M; Furuse M; Yasuo S
    Chronobiol Int; 2014 Mar; 31(2):189-98. PubMed ID: 24147659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian disruption in experimental cancer processes.
    Filipski E; Lévi F
    Integr Cancer Ther; 2009 Dec; 8(4):298-302. PubMed ID: 20042408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic circadian desynchronization of feeding-fasting rhythm generates alterations in daily glycemia, LDL cholesterolemia and microbiota composition in mice.
    Trebucq LL; Lamberti ML; Rota R; Aiello I; Borio C; Bilen M; Golombek DA; Plano SA; Chiesa JJ
    Front Nutr; 2023; 10():1154647. PubMed ID: 37125029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag.
    Kiessling S; Eichele G; Oster H
    J Clin Invest; 2010 Jul; 120(7):2600-9. PubMed ID: 20577050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light entrainment of the SCN circadian clock and implications for personalized alterations of corticosterone rhythms in shift work and jet lag.
    Li Y; Androulakis IP
    Sci Rep; 2021 Sep; 11(1):17929. PubMed ID: 34504149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melatonin restores hippocampal neural precursor cell proliferation and prevents cognitive deficits induced by jet lag simulation in adult mice.
    Iggena D; Winter Y; Steiner B
    J Pineal Res; 2017 May; 62(4):. PubMed ID: 28178375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronotype and stability of spontaneous locomotor activity rhythm in BMAL1-deficient mice.
    Pfeffer M; Korf HW; von Gall C
    Chronobiol Int; 2015 Feb; 32(1):81-91. PubMed ID: 25216070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic jet lag reduces motivation and affects other mood-related behaviors in male mice.
    Acosta J; Crespo MT; Plano SA; Golombek DA; Chiesa JJ; Agostino PV
    Front Physiol; 2023; 14():1225134. PubMed ID: 37745237
    [No Abstract]   [Full Text] [Related]  

  • 16. Dysregulation of inflammatory responses by chronic circadian disruption.
    Castanon-Cervantes O; Wu M; Ehlen JC; Paul K; Gamble KL; Johnson RL; Besing RC; Menaker M; Gewirtz AT; Davidson AJ
    J Immunol; 2010 Nov; 185(10):5796-805. PubMed ID: 20944004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jet Lag Recovery and Memory Functions Are Correlated with Direct Light Effects on Locomotion.
    Richardson MES; Parkins S; Kaneza I; Dauphin AC
    J Biol Rhythms; 2020 Dec; 35(6):588-597. PubMed ID: 32877295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation to experimental jet-lag in R6/2 mice despite circadian dysrhythmia.
    Wood NI; McAllister CJ; Cuesta M; Aungier J; Fraenkel E; Morton AJ
    PLoS One; 2013; 8(2):e55036. PubMed ID: 23390510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginine vasopressin signaling in the suprachiasmatic nucleus on the resilience of circadian clock to jet lag.
    Yamaguchi Y
    Neurosci Res; 2018 Apr; 129():57-61. PubMed ID: 29061320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of chronic forced circadian desynchronization on body weight and metabolism in male mice.
    Casiraghi LP; Alzamendi A; Giovambattista A; Chiesa JJ; Golombek DA
    Physiol Rep; 2016 Apr; 4(8):. PubMed ID: 27125665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.