These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33087702)

  • 21. Temporal variations of coagulation factor VII activity in mice are influenced by lighting regime.
    Colognesi I; Pasquali V; Foà A; Renzi P; Bernardi F; Bertolucci C; Pinotti M
    Chronobiol Int; 2007; 24(2):305-13. PubMed ID: 17453849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light cycle phase advance as a model for jet lag reprograms the circadian rhythms of murine extraorbital lacrimal glands.
    Huang S; Jiao X; Lu D; Pei X; Qi D; Li Z
    Ocul Surf; 2021 Apr; 20():95-114. PubMed ID: 33582293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chronic phase advances reduces recognition memory and increases vascular cognitive dementia-like impairments in aged mice.
    Liu JA; Bumgarner JR; Walker WH; Meléndez-Fernández OH; Walton JC; DeVries AC; Nelson RJ
    Sci Rep; 2024 Apr; 14(1):7760. PubMed ID: 38565934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of jet lag on the human brain: A neuroimaging study.
    Zhang F; Li W; Li H; Gao S; Sweeney JA; Jia Z; Gong Q
    Hum Brain Mapp; 2020 Jun; 41(9):2281-2291. PubMed ID: 32125068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chronic Jet Lag Exacerbates Jejunal and Colonic Microenvironment in Mice.
    Li Q; Wang B; Qiu HY; Yan XJ; Cheng L; Wang QQ; Chen SL
    Front Cell Infect Microbiol; 2021; 11():648175. PubMed ID: 34141627
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Circadian disruption accelerates liver carcinogenesis in mice.
    Filipski E; Subramanian P; Carrière J; Guettier C; Barbason H; Lévi F
    Mutat Res; 2009; 680(1-2):95-105. PubMed ID: 19833225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chronic jet lag impairs startle-induced locomotion in Drosophila.
    Vaccaro A; Birman S; Klarsfeld A
    Exp Gerontol; 2016 Dec; 85():24-27. PubMed ID: 27639775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accelerating recovery from jet lag: prediction from a multi-oscillator model and its experimental confirmation in model animals.
    Kori H; Yamaguchi Y; Okamura H
    Sci Rep; 2017 Apr; 7():46702. PubMed ID: 28443630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental jetlag disrupts circadian clock genes but improves performance in racehorses after light-dependent rapid resetting of neuroendocrine systems and the rest-activity cycle.
    Tortonese DJ; Preedy DF; Hesketh SA; Webb HN; Wilkinson ES; Allen WR; Fuller CJ; Townsend J; Short RV
    J Neuroendocrinol; 2011 Dec; 23(12):1263-72. PubMed ID: 21919973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gestational jet lag predisposes to later-life skeletal and cardiac disease.
    Chaves I; van der Eerden B; Boers R; Boers J; Streng AA; Ridwan Y; Schreuders-Koedam M; Vermeulen M; van der Pluijm I; Essers J; Gribnau J; Reiss IKM; van der Horst GTJ
    Chronobiol Int; 2019 May; 36(5):657-671. PubMed ID: 30793958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reentrainment of the circadian pacemaker during jet lag: East-west asymmetry and the effects of north-south travel.
    Diekman CO; Bose A
    J Theor Biol; 2018 Jan; 437():261-285. PubMed ID: 28987464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preventive effect of L-carnitine on the disorder of lipid metabolism and circadian clock of mice subjected to chronic jet-lag.
    Xie X; Guo A; Wu T; Hu Q; Huang L; Yao C; Zhao B; Zhang W; Chi B; Lu P; Zhao Z; Fu Z
    Physiol Res; 2017 Nov; 66(5):801-810. PubMed ID: 28730830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protective effects of astaxanthin on a combination of D-galactose and jet lag-induced aging model in mice.
    Ni Y; Wu T; Yang L; Xu Y; Ota T; Fu Z
    Endocr J; 2018 May; 65(5):569-578. PubMed ID: 29526991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Slow and fast orthodromic and antidromic variants in acute 9-h jet-lagged pygmy field mice.
    Basu P; Kumar D; Singaravel M
    Indian J Exp Biol; 2014 May; 52(5):460-6. PubMed ID: 24851408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chronic jetlag-induced alterations in pancreatic diurnal gene expression.
    Schwartz PB; Walcheck MT; Berres M; Nukaya M; Wu G; Carrillo ND; Matkowskyj KA; Ronnekleiv-Kelly SM
    Physiol Genomics; 2021 Aug; 53(8):319-335. PubMed ID: 34056925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system.
    Davidson AJ; Castanon-Cervantes O; Leise TL; Molyneux PC; Harrington ME
    Eur J Neurosci; 2009 Jan; 29(1):171-80. PubMed ID: 19032592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transgenic rats expressing dominant negative BMAL1 showed circadian clock amplitude reduction and rapid recovery from jet lag.
    Minami Y; Yoshikawa T; Nagano M; Koinuma S; Morimoto T; Fujioka A; Furukawa K; Ikegami K; Tatemizo A; Egawa K; Tamaru T; Taniguchi T; Shigeyoshi Y
    Eur J Neurosci; 2021 Mar; 53(6):1783-1793. PubMed ID: 33351992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does chronic jet lag increase risk of cancer?
    Khan S; Xue M; Yong VW
    Aging (Albany NY); 2021 Sep; 13(18):21810-21811. PubMed ID: 34586082
    [No Abstract]   [Full Text] [Related]  

  • 39. Lhx1 maintains synchrony among circadian oscillator neurons of the SCN.
    Hatori M; Gill S; Mure LS; Goulding M; O'Leary DD; Panda S
    Elife; 2014 Jul; 3():e03357. PubMed ID: 25035422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The endogenous melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors.
    Pfeffer M; Rauch A; Korf HW; von Gall C
    Chronobiol Int; 2012 May; 29(4):415-29. PubMed ID: 22489607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.