These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33087851)

  • 1. teiresias, a Fruitless target gene encoding an immunoglobulin-superfamily transmembrane protein, is required for neuronal feminization in Drosophila.
    Sato K; Ito H; Yamamoto D
    Commun Biol; 2020 Oct; 3(1):598. PubMed ID: 33087851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mode of action of Fruitless: Is it an easy matter to switch the sex?
    Sato K; Yamamoto D
    Genes Brain Behav; 2020 Feb; 19(2):e12606. PubMed ID: 31420927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Midline crossing by gustatory receptor neuron axons is regulated by fruitless, doublesex and the Roundabout receptors.
    Mellert DJ; Knapp JM; Manoli DS; Meissner GW; Baker BS
    Development; 2010 Jan; 137(2):323-32. PubMed ID: 20040498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fruitless Represses robo1 Transcription to Shape Male-Specific Neural Morphology and Behavior in Drosophila.
    Ito H; Sato K; Kondo S; Ueda R; Yamamoto D
    Curr Biol; 2016 Jun; 26(12):1532-1542. PubMed ID: 27265393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The core-promoter factor TRF2 mediates a Fruitless action to masculinize neurobehavioral traits in Drosophila.
    Chowdhury ZS; Sato K; Yamamoto D
    Nat Commun; 2017 Nov; 8(1):1480. PubMed ID: 29133872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo functional analysis of Drosophila Robo1 immunoglobulin-like domains.
    Reichert MC; Brown HE; Evans TA
    Neural Dev; 2016 Aug; 11(1):15. PubMed ID: 27539083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An epigenetic switch of the brain sex as a basis of gendered behavior in Drosophila.
    Sato K; Yamamoto D
    Adv Genet; 2014; 86():45-63. PubMed ID: 25172345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Drosophila fruitless-gal4 transgenes reveals expression in male-specific fruitless neurons and innervation of male reproductive structures.
    Billeter JC; Goodwin SF
    J Comp Neurol; 2004 Jul; 475(2):270-87. PubMed ID: 15211467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slit Binding via the Ig1 Domain Is Essential for Midline Repulsion by Drosophila Robo1 but Dispensable for Receptor Expression, Localization, and Regulation in Vivo.
    Brown HE; Reichert MC; Evans TA
    G3 (Bethesda); 2015 Sep; 5(11):2429-39. PubMed ID: 26362767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Male-specific Fruitless isoforms have different regulatory roles conferred by distinct zinc finger DNA binding domains.
    Dalton JE; Fear JM; Knott S; Baker BS; McIntyre LM; Arbeitman MN
    BMC Genomics; 2013 Sep; 14():659. PubMed ID: 24074028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fruitless recruits two antagonistic chromatin factors to establish single-neuron sexual dimorphism.
    Ito H; Sato K; Koganezawa M; Ote M; Matsumoto K; Hama C; Yamamoto D
    Cell; 2012 Jun; 149(6):1327-38. PubMed ID: 22682252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour.
    Manoli DS; Foss M; Villella A; Taylor BJ; Hall JC; Baker BS
    Nature; 2005 Jul; 436(7049):395-400. PubMed ID: 15959468
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Brown HE; Reichert MC; Evans TA
    G3 (Bethesda); 2018 Feb; 8(2):621-630. PubMed ID: 29217730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sexually dimorphic shaping of interneuron dendrites involves the hunchback transcription factor.
    Goto J; Mikawa Y; Koganezawa M; Ito H; Yamamoto D
    J Neurosci; 2011 Apr; 31(14):5454-9. PubMed ID: 21471381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain.
    Kimura K; Ote M; Tazawa T; Yamamoto D
    Nature; 2005 Nov; 438(7065):229-33. PubMed ID: 16281036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome wide identification of fruitless targets suggests a role in upregulating genes important for neural circuit formation.
    Vernes SC
    Sci Rep; 2014 Mar; 4():4412. PubMed ID: 24642956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fruitless decommissions regulatory elements to implement cell-type-specific neuronal masculinization.
    Brovkina MV; Duffié R; Burtis AEC; Clowney EJ
    PLoS Genet; 2021 Feb; 17(2):e1009338. PubMed ID: 33600447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sex-switching of the Drosophila brain by two antagonistic chromatin factors.
    Ito H; Sato K; Yamamoto D
    Fly (Austin); 2013; 7(2):87-91. PubMed ID: 23519136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutually exclusive expression of sex-specific and non-sex-specific fruitless gene products in the Drosophila central nervous system.
    Sato K; Yamamoto D
    Gene Expr Patterns; 2022 Mar; 43():119232. PubMed ID: 35124238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of the male-specific muscle in female Drosophila by ectopic fruitless expression.
    Usui-Aoki K; Ito H; Ui-Tei K; Takahashi K; Lukacsovich T; Awano W; Nakata H; Piao ZF; Nilsson EE; Tomida J; Yamamoto D
    Nat Cell Biol; 2000 Aug; 2(8):500-6. PubMed ID: 10934470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.