These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 3308882)
1. Electrostatic and hydrophobic interactions of the intermediate filament protein vimentin and its amino terminus with lipid bilayers. Perides G; Harter C; Traub P J Biol Chem; 1987 Oct; 262(28):13742-9. PubMed ID: 3308882 [TBL] [Abstract][Full Text] [Related]
2. Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayers. Benfenati F; Greengard P; Brunner J; Bähler M J Cell Biol; 1989 May; 108(5):1851-62. PubMed ID: 2497105 [TBL] [Abstract][Full Text] [Related]
3. Specific interaction of the intermediate filament protein vimentin and its isolated N-terminus with negatively charged phospholipids as determined by vesicle aggregation, fusion, and leakage measurements. Horkovics-Kovats S; Traub P Biochemistry; 1990 Sep; 29(37):8652-7. PubMed ID: 2271547 [TBL] [Abstract][Full Text] [Related]
4. Salt-stable interaction of the amino-terminal head region of vimentin with the alpha-helical rod domain of cytoplasmic intermediate filament proteins and its relevance to protofilament structure and filament formation and stability. Traub P; Scherbarth A; Wiegers W; Shoeman RL J Cell Sci; 1992 Feb; 101 ( Pt 2)():363-81. PubMed ID: 1629250 [TBL] [Abstract][Full Text] [Related]
5. Efficient interaction of nonpolar lipids with intermediate filaments of the vimentin type. Traub P; Perides G; Kühn S; Scherbarth A Eur J Cell Biol; 1987 Feb; 43(1):55-64. PubMed ID: 3569305 [TBL] [Abstract][Full Text] [Related]
6. Interaction of the cytoskeletal component vinculin with bilayer structures analyzed with a photoactivatable phospholipid. Niggli V; Dimitrov DP; Brunner J; Burger MM J Biol Chem; 1986 May; 261(15):6912-8. PubMed ID: 3084492 [TBL] [Abstract][Full Text] [Related]
7. Structural elements of the amino-terminal head domain of vimentin essential for intermediate filament formation in vivo and in vitro. Beuttenmüller M; Chen M; Janetzko A; Kühn S; Traub P Exp Cell Res; 1994 Jul; 213(1):128-42. PubMed ID: 8020583 [TBL] [Abstract][Full Text] [Related]
8. Influence of phospholipids on the formation and stability of vimentin-type intermediate filaments. Perides G; Scherbarth A; Traub P Eur J Cell Biol; 1986 Dec; 42(2):268-80. PubMed ID: 3816818 [TBL] [Abstract][Full Text] [Related]
9. Deletion mutagenesis of the amino-terminal head domain of vimentin reveals dispensability of large internal regions for intermediate filament assembly and stability. Shoeman RL; Hartig R; Berthel M; Traub P Exp Cell Res; 2002 Oct; 279(2):344-53. PubMed ID: 12243759 [TBL] [Abstract][Full Text] [Related]
10. Involvement of the N-terminal polypeptide of vimentin in the formation of intermediate filaments. Traub P; Vorgias CE J Cell Sci; 1983 Sep; 63():43-67. PubMed ID: 6313713 [TBL] [Abstract][Full Text] [Related]
11. Membrane topology of light-harvesting protein B870-alpha of Rhodospirillum rubrum G-9+. Amino acid residues in contact with the lipid bilayer as inferred from labeling with photogenerated carbenes. Meister H; Bachofen R; Semenza G; Brunner J J Biol Chem; 1985 Dec; 260(30):16326-31. PubMed ID: 3934175 [TBL] [Abstract][Full Text] [Related]
12. Influence of Lipid Saturation, Hydrophobic Length and Cholesterol on Double-Arginine-Containing Helical Peptides in Bilayer Membranes. Lipinski K; McKay MJ; Afrose F; Martfeld AN; Koeppe RE; Greathouse DV Chembiochem; 2019 Nov; 20(21):2784-2792. PubMed ID: 31150136 [TBL] [Abstract][Full Text] [Related]
13. A conserved motif in the tail domain of vinculin mediates association with and insertion into acidic phospholipid bilayers. Johnson RP; Niggli V; Durrer P; Craig SW Biochemistry; 1998 Jul; 37(28):10211-22. PubMed ID: 9665728 [TBL] [Abstract][Full Text] [Related]
14. Interaction in vitro of nonepithelial intermediate filament proteins with total cellular lipids, individual phospholipids, and a phospholipid mixture. Traub P; Perides G; Schimmel H; Scherbarth A J Biol Chem; 1986 Aug; 261(23):10558-68. PubMed ID: 3733720 [TBL] [Abstract][Full Text] [Related]
15. Electrostatic and hydrophobic forces tether the proximal region of the angiotensin II receptor (AT1A) carboxyl terminus to anionic lipids. Mozsolits H; Unabia S; Ahmad A; Morton CJ; Thomas WG; Aguilar MI Biochemistry; 2002 Jun; 41(24):7830-40. PubMed ID: 12056915 [TBL] [Abstract][Full Text] [Related]
16. Membrane insertion and lateral diffusion of fluorescence-labelled cytochrome c oxidase subunit IV signal peptide in charged and uncharged phospholipid bilayers. Frey S; Tamm LK Biochem J; 1990 Dec; 272(3):713-9. PubMed ID: 2176475 [TBL] [Abstract][Full Text] [Related]
17. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2002 Jul; 41(29):9197-207. PubMed ID: 12119034 [TBL] [Abstract][Full Text] [Related]
18. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes. Saleh MT; Ferguson J; Boggs JM; Gariépy J Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the nucleic acid binding region of the intermediate filament protein vimentin by fluorescence polarization. Shoeman RL; Hartig R; Traub P Biochemistry; 1999 Dec; 38(51):16802-9. PubMed ID: 10606512 [TBL] [Abstract][Full Text] [Related]